一、說教材(一)說教學內容:人教版小學數(shù)學三年級上冊第九單元數(shù)學廣角第一課時簡單的排列。這節(jié)內容是在學生已經(jīng)接觸了一點排列與組合知識的基礎上繼續(xù)讓學生通過觀察、猜測、實驗等活動找出事物的排列數(shù)和組合數(shù)?!稑藴省分兄赋觥爸匾臄?shù)學概念與數(shù)學思想宜逐步深入”。所以,這節(jié)內容重在向學生滲透數(shù)學思想,并逐步培養(yǎng)學生有順序地、全面的思考問題的意識。(二)說教學目標:1、讓學生經(jīng)歷兩種不同的事物進行簡單的搭配的過程,學習有順序有條理,由具體到抽象地進行思考,探索出共有多少種搭配方法的數(shù)量關系。2、讓學生在探索過程中體會解決問題策略的多樣性,發(fā)展思維能力,培養(yǎng)符號感。3、讓學生在解決問題的過程中體會許多現(xiàn)實生活中的問題可以用數(shù)學方法去解決,從而增強對數(shù)學學習的興趣。
6、解決問題全班共要握:44+43+……+2+1=990(次)7、揭題:我們生活中尋常的握手就用到我們數(shù)學的《簡單的組合》三、應用規(guī)律解決問題1、02年世界杯背景簡單介紹。例3:(出示圖片)世界杯足球賽是全世界足球愛好者四年一度的足球盛宴。2002年世界杯將為歷史寫下新的一頁:這是世界杯史上第一次由兩個國家(韓國和日本)共同主辦的大型單項錦標賽。2002年世界杯對全世界華人來說,也是個值得驕傲的日子,中國國家男子足球隊第一次闖進世界杯決賽圈。中國隊將在小組賽上對陣巴西隊、哥斯達黎加隊、土耳其隊。理解題意:2002年世界杯足球賽C組球隊如下:巴西、土爾其、中國、哥斯達黎加。要求每兩個球隊踢一場,問我們一共要踢多少場?2、數(shù)線段:(1)線段上共有10個點,共有多少條線段?
二、說教材的三維目標和重難點1、知識目標:進一步熟悉面積單位的大小,掌握相鄰面積間的進率是100,會進行簡單的換算。2、能力目標:培養(yǎng)學生觀察、比較、抽象、概括、判斷、推理能力及空間觀念。3、情感目標:培養(yǎng)學生生生合作的學習精神,樂于助人的集體精神。重點:掌握相鄰面積間的進率是100。難點:掌握相鄰面積間的進率是100。三、說設計意圖對于這節(jié)課的教學設計,我們組的教師們嘗試從不同的角度去理解教材,先后嘗試了多種不同的教學設計,下面僅結合課堂教學中的三大環(huán)節(jié)(開課、活動操作、練習設計)來簡述一下我們的研究過程及我們對每種設計的感受。1、第一環(huán)節(jié)開課的研究關于開課的研究,第一次試教,學生回憶長度單位復習長度單位間的進率引導到面積單位的研究。
一、說教材我所上的課是人教版數(shù)學四年級下冊第二單元《位置與方向》第四課時的教學內容。在此之前學生已經(jīng)掌握了根據(jù)“上、下、左、右、前、后和東、南、西、北等八個方向描述物體的相對位置,能夠根據(jù)方向和距離兩個條件確定物體的位置,能夠根據(jù)方向和距離,在圖上繪出物體的位置。已能體會到位置關系的相對性。本節(jié)課在此基礎上使學生學習在位置變化的情況下判斷行走的方向和路程,練習描述簡單的路線圖,在做練習時讓學生根據(jù)方向和距離,繪制簡單的路線圖。教材在編排上結合班級生活實際,了解確定位置的重要性;提供豐富的活動情境,幫助學生掌握確定位置的方法。本課的教學目標是:知識技能目標:能用語言描述簡單的路線圖。過程方法目標:在合作交流中能繪制簡單的路線圖。
它位于三角函數(shù)與數(shù)學變換的結合點上,能較好反應三角函數(shù)及變換之間的內在聯(lián)系和相互轉換,本節(jié)課內容的地位體現(xiàn)在它的基礎性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.
問題導學類比橢圓幾何性質的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質,如何研究這些性質1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
一、說教材該內容是人教版小學數(shù)學四年級第八冊第四單元的最后一個內容,是在學生已經(jīng)掌握了把整萬、整億數(shù)改寫成用萬或億作單位的數(shù)的基礎上進行教學的。通過本節(jié)課的學習,要使學生能通過獨立思考、合作交流,掌握把大數(shù)目改寫成用“萬”或“億”作單位的數(shù)的方法,為以后能準確、恰當?shù)剡\用數(shù)目描述生活現(xiàn)象打下良好的基礎。根據(jù)本課的內容和學生已有的知識和心理特征,我制訂如下教學目標:1、掌握把較大數(shù)改寫成用“萬”或“億”作單位的數(shù)的方法,并能根據(jù)要求保留一定的小數(shù)位數(shù)。2、經(jīng)歷將一個數(shù)改寫成用“萬”或“億”作單位的數(shù)的過程,體驗數(shù)據(jù)記法的多樣性。3、感受數(shù)學知識的應用性。理解和掌握把較大的數(shù)改寫成用“萬”或“億”作單位的小數(shù)的方法是本課的教學重點。位數(shù)不夠用0補足是本節(jié)課的難點。
《函數(shù)的單調性與最大(?。┲祡》系人教A版高中數(shù)學必修第一冊第三章第二節(jié)的內容,本節(jié)包括函數(shù)的單調性的定義與判斷及其證明、函數(shù)最大(小)值的求法。在初中學習函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內容是初中有關內容的深化、延伸和提高函數(shù)的單調性是函數(shù)眾多性質中的重要性質之一,函數(shù)的單調性一節(jié)中的知識是前一節(jié)內容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質,是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調性的理論基礎;在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質的救開結合思想將貫穿于我們整個高中數(shù)學教學。
《函數(shù)的單調性與最大(?。┲怠肥歉咧袛?shù)學新教材第一冊第三章第2節(jié)的內容。在此之前,學生已學習了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學習起著鋪墊作用。學生在初中已經(jīng)學習了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎上學生對增減性有一個初步的感性認識,所以本節(jié)課是學生數(shù)學思想的一次重要提高。函數(shù)單調性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內容的基礎,對進一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,對解決各種數(shù)學問題有著廣泛作用。課程目標1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調性的定義;2、會根據(jù)單調定義證明函數(shù)單調性;3、理解函數(shù)的最大(?。┲导捌鋷缀我饬x;4、學會運用函數(shù)圖象理解和研究函數(shù)的性質.數(shù)學學科素養(yǎng)
(一)復習舊知,導入新課。1、師:同學們,你們還記得《烏鴉喝水》的故事嗎?我們先來看一看這個故事吧?。ㄕn件第2張播放視頻《烏鴉喝水》)【設計意圖】用視頻引入課題,激發(fā)學生的學習興趣。2、烏鴉是怎么喝到水的?為什么?(課件第3張)生1:烏鴉把石子投進水罐中,水面升高了,烏鴉就喝到水了。生2:這說明石子占了一定的空間,所以水面會升高,烏鴉才能喝到水。師:這節(jié)課我們就來研究一下體積和體積單位。(板書課題)(二)探究新知1.小組實驗并觀察:(課件地4張)(1)取兩個同樣大小的玻璃杯,先往一個杯子里倒?jié)M水;取一塊鵝卵石放入另一個杯子,再把第一個杯子里的水倒進第二個杯子里,會出現(xiàn)什么情況?為什么?(2)匯報交流:(課件第5張)生1:第一個杯子里的水不能全部倒入第二個杯子里。師:你知道為什么會出現(xiàn)這種現(xiàn)象嗎?生2:鵝卵石占了一定的空間,所以第一個杯子會剩下一部分水?!驹O計意圖】用實驗的方式,讓學生從實驗的過程中發(fā)現(xiàn)現(xiàn)象并進一步思考原因,從而找到規(guī)律,培養(yǎng)學生的觀察能力、思維能力。2.下面的洗衣機、影碟機和手機,哪個所占的空間大?(課件第6張)洗衣機所占的空間最大。3.引入體積的意義:師:物體所占空間的大小叫做物體的體積。師:上面三個物體,哪個體積最大?哪個體積最?。?生:洗衣機的體積最大,手機的體積最小。4.學習體積單位(課件第7張)(1)怎樣比較下面兩個長方體體積的大小呢?
l尺子上每相鄰的兩條長刻度線之間的一大格的長度都是1厘米。師:我們大家現(xiàn)在一起用手比劃一下,1厘米多長。互相看一下,計住了嗎?閉上眼睛想一想,1厘米有多長。3、認識幾厘米師:我們現(xiàn)在知道1厘米有多長了,那3厘米又有多長呢?師:同學們還能在尺子上找到其他3厘米的長度嗎?4、用厘米量師:剛才上課時,老師展示的2根線繩,到底哪一根長一點呢?現(xiàn)在,同學們先估計一下這兩根線繩各自多長,然后在測量比較一下,好嗎?師:結果是哪根線繩長一點呢?能說說你是怎么量的嗎?三、知識拓展1、師:老師這里有一把尺子,可是它斷了一節(jié),沒有刻度“0”,只剩下刻度3到刻度10,那么這把尺子能不能用來量物體的長度?。客瑢W們能不能幫老師想一想辦法,好嗎?2、其他測量長度的工具(課件展示)
一、說教材1、教學內容:本課內容選自2013人教版小學數(shù)學二年級上冊第一單元《長度單位》例1、例2、例3的教學內容。 2、教材所處的地位和作用本課是在學生已經(jīng)對長短的概念有了初步的認識,并學會直觀比較一些物體長短的基礎上來學習一些計量長度的知識,這些知識可以幫助學生認識長度單位,初步建立1厘米的長度觀念。 3、學情分析二年級學生經(jīng)過一年的學習,已經(jīng)認識了100以內的數(shù),學會了一些簡單的統(tǒng)計方法。這些知識儲備為我們進一步學習新知識打下基礎。二、說教學目標1、知識與技能目標:統(tǒng)一長度單位,建立1厘米的觀念,會用厘米測量。2、情感目標:在小組合作測量的過程中,培養(yǎng)學生樂于探究的學習態(tài)度,學會與他人合作。體驗知識的形成過程,進一步體驗學習成功帶來的喜悅。
知識探究(一):普查與抽查像人口普查這樣,對每一個調查調查對象都進行調查的方法,稱為全面調查(又稱普查)。 在一個調查中,我們把調查對象的全體稱為總體,組成總體的每一個調查對象稱為個體。為了強調調查目的,也可以把調查對象的某些指標的全體作為總體,每一個調查對象的相應指標作為個體。問題二:除了普查,還有其他的調查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
問題導學類比用方程研究橢圓雙曲線幾何性質的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質,如何研究這些性質?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質.解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質求標準方程的思路1.利用橢圓的幾何性質求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.
1、交流與發(fā)現(xiàn)為了了解本校學生暑假期間參加體育活動的情況,學校準備抽取一部分學生進行調查,你認為按下面的調查方法取得的結果能反映全校學生的一般情況嗎?如果不能反映,應當如何改進調查方法?方法1:調查學校田徑隊的30名同學;方法2:調查每個班的男同學;方法3:從每班抽取1名同學進行調查;方法4:選取每個班級中的一半學生進行調查.通過前面的活動,學生親身經(jīng)歷了一次數(shù)據(jù)的調查過程,并通過對所得數(shù)據(jù)的計算和分析,了解了自己在家干家務活的時間所處的位置和水平,在調查過程中體會到調查方便有效的重要性.接下來,就能很好地解決交流與發(fā)現(xiàn)中的問題.師生共同討論完成交流與發(fā)現(xiàn).
2、試做例題,掌握轉化方法明確轉化原理后,讓學生試算例題。在試做的基礎上引導學生進行觀察比較,抽象出轉化時小數(shù)點的移位方法,最后概括總結出移位的法則。具體做法如下:1、我認為小數(shù)除法如果按照教材按部就班教學有點不合理的,不利于學生從整體上把握小數(shù)除法,不利于學生對知識的建構。因此,我選擇了重組教材。(把例5例6有機的結合在一起的同時也新增加了一個例題,那就是被除數(shù)小數(shù)位數(shù)比除數(shù)的小數(shù)位數(shù)多)。例5、例6和新增加例題的教學,引導學生概括總結出轉化時移位的方法,同時在此基礎上歸納出除數(shù)是小數(shù)的除法計算法則。在得出計算法則后,還要注意強調:(1)小數(shù)點向右移動的位數(shù)取決于除數(shù)的小數(shù)位數(shù),而不由被除數(shù)的小數(shù)位數(shù)確定。(2)整數(shù)除法中,兩個數(shù)相除的商不會大于被除數(shù),而在小數(shù)除法中,當除數(shù)小于1時,商反而比被除數(shù)大。