方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請(qǐng)學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請(qǐng)一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評(píng)價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
問題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們?cè)贏處測(cè)得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長(zhǎng),進(jìn)而求出EF的長(zhǎng),得出答案.解:延長(zhǎng)DE交AB延長(zhǎng)線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計(jì)算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計(jì)算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計(jì)算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計(jì)算器一定要注意計(jì)算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時(shí),常常使用計(jì)算器幫助我們處理比較復(fù)雜的計(jì)算。
③設(shè)每件襯衣降價(jià)x元,獲得的利潤(rùn)為y元,則定價(jià)為 元 ,每件利潤(rùn)為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤(rùn),最大利潤(rùn)為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤(rùn)最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測(cè) ☆ 1、用長(zhǎng)為6m的鐵絲做成一個(gè)邊長(zhǎng)為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長(zhǎng)為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場(chǎng)調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來則相對(duì)困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問題的過程中往往會(huì)忽略同弧的問題,在教學(xué)過程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
(二)身體訓(xùn)練的主要內(nèi)容 1、做徒手操 2、以跑為主的身體訓(xùn)練?! ?l)慢跑:15米X2,指導(dǎo)學(xué)生跑的動(dòng)作。 (2)快跑:10米X2、15米X2,要求跑的動(dòng)作正確?! ?3)曲線跑:培養(yǎng)學(xué)生的靈敏?! ?4)自由跳:培養(yǎng)學(xué)生的后蹬方法。
一、圍繞中心,服從大局,做好宿舍調(diào)整及管理服務(wù)工作 1、做好宿舍調(diào)整工作。為了達(dá)到學(xué)校提出的有關(guān)住宿標(biāo)準(zhǔn),宿舍管理方面,克服各種困難;積極做好學(xué)生的思想工作,有力確保了學(xué)校的安全穩(wěn)定大局。 2、宿舍晚間熄燈制度。為了配合校風(fēng)學(xué)風(fēng)建設(shè),加強(qiáng)對(duì)學(xué)生管理制度,熄燈后加強(qiáng)了查宿舍人員名單,了解學(xué)生動(dòng)態(tài)情況。有什么問題及時(shí)上報(bào)。
青年應(yīng)該勇于放飛夢(mèng)想,追逐夢(mèng)想。周總理的“為中華之崛起而讀書”和馬丁·路德·金的“我有一個(gè)夢(mèng)想”等啟示我們:年輕人絕不能缺少夢(mèng)想。夢(mèng)想是什么?就是有目標(biāo)。我一直相信,目標(biāo)比努力更重要。有個(gè)故事是這么說的:有個(gè)人好不容易攬到了一個(gè)工程,他便加班加點(diǎn)、認(rèn)認(rèn)真真的施工。完工后,不但沒賺到錢,還挨了一頓揍。什么原因?人家讓他挖一口井,他把圖紙看倒了,蓋了個(gè)煙囪?!澳サ恫徽`砍柴工?!睕]有明確目標(biāo)、找不準(zhǔn)方向,就急于出發(fā)、急于求成,最終的結(jié)果很有可能就是南轅北轍,無功而返。我們偉大的中國(guó)夢(mèng)也是有具體目標(biāo)的,作為青年一代的我們,是實(shí)現(xiàn)目標(biāo)的生力軍,所以我們應(yīng)該追夢(mèng),但更要正確的追夢(mèng)。
青年應(yīng)該勇于放飛夢(mèng)想,追逐夢(mèng)想。周總理的“為中華之崛起而讀書”和馬丁·路德·金的“我有一個(gè)夢(mèng)想”等啟示我們:年輕人絕不能缺少夢(mèng)想。夢(mèng)想是什么?就是有目標(biāo)。我一直相信,目標(biāo)比努力更重要。有個(gè)故事是這么說的:有個(gè)人好不容易攬到了一個(gè)工程,他便加班加點(diǎn)、認(rèn)認(rèn)真真的施工。完工后,不但沒賺到錢,還挨了一頓揍。什么原因?人家讓他挖一口井,他把圖紙看倒了,蓋了個(gè)煙囪?!澳サ恫徽`砍柴工?!睕]有明確目標(biāo)、找不準(zhǔn)方向,就急于出發(fā)、急于求成,最終的結(jié)果很有可能就是南轅北轍,無功而返。我們偉大的中國(guó)夢(mèng)也是有具體目標(biāo)的,作為青年一代的我們,是實(shí)現(xiàn)目標(biāo)的生力軍,所以我們應(yīng)該追夢(mèng),但更要正確的追夢(mèng)。
l Toteach the story and understand the story.l Ss can act out the conversation anduse the main sentences.l Train them to form a concept ofcooperation Help them to improve their interest of Englishlearning
l To teach the consonant sounds [t]and for letters t respectively.To teach the consonant sounds [d] and for letters d respectively.
老師們,同學(xué)們:早上好!再過幾天就是端午節(jié)了。我今天在國(guó)旗下講話的題目是:端午節(jié)的隨想。端午節(jié)讓我想起愛國(guó)詩(shī)人屈原。我懷想,滔滔汨羅水,悠悠數(shù)千年,拳拳赤子心,感天動(dòng)地情。我仿佛看到:戰(zhàn)國(guó)時(shí),楚王寵信奸臣,屈原仗義直言,卻被革職流放。秦國(guó)趁此機(jī)會(huì)進(jìn)攻楚國(guó),楚國(guó)千里疆域毀于一旦??吹絿?guó)破家亡,百姓流離失所,屈原有心報(bào)國(guó),無力回天。悲憤之下,他抱著一塊巨石投汩(mi)羅江而去。當(dāng)?shù)匕傩章犝f屈原投江了,紛紛前來救助,他們順流而下,一直追到洞庭湖,也沒有找到屈原的尸體,湖面上大小船只往來穿梭,百舸爭(zhēng)游,蔚為壯觀。這一天是農(nóng)歷五月初五。后來,每到這一天,人們就在江河上賽龍舟,懷念屈原。人們還把粽子投入水中,只為了喂飽魚龍蝦蟹,保全屈原的尸體不被吞噬。也許,這古老的傳說已經(jīng)無法讓21世紀(jì)的現(xiàn)代人感動(dòng)。但是,我想起XX年曾經(jīng)有一篇報(bào)道讓中國(guó)人震驚了!遼寧大學(xué)民俗研究中心主任、民俗學(xué)教授烏丙安給文化部副部長(zhǎng)周和平發(fā)送一份急件,說據(jù)可靠消息,亞洲某國(guó)準(zhǔn)備向聯(lián)合國(guó)教科文組織申報(bào)端午節(jié)為本國(guó)的文化遺產(chǎn),目前已將其列入“國(guó)家遺產(chǎn)”名錄,很快將向聯(lián)合國(guó)申報(bào)“人類口頭遺產(chǎn)和非物質(zhì)遺產(chǎn)代表作”。
同學(xué)們:早上好!今天我講話的題目是——從小事做起,做一個(gè)不平凡的人。我請(qǐng)大家思考以下幾個(gè)問題:1.學(xué)校每年都花費(fèi)近十萬(wàn)元更新桌凳,如果我們?nèi)巳藧圩o(hù)桌凳,輕拿輕放,壞了及時(shí)送去維修,那么,還需要花費(fèi)這十萬(wàn)元嗎?2.學(xué)校每年用于衛(wèi)生保潔的費(fèi)用將近十五萬(wàn)元,如果我們?nèi)巳瞬粊y拋紙屑,地上臟了都能主動(dòng)打掃干凈,那么,這十五萬(wàn)元還需要花費(fèi)嗎?3.為了維持校園的安全秩序,學(xué)?;ㄙM(fèi)了大量的人力物力。如果我們?nèi)巳伺宕餍乜?,遵守紀(jì)律,不在樓道內(nèi)追逐打鬧,安全有序進(jìn)出校門,學(xué)校還需要花費(fèi)這么多的人力物力嗎?4.校園里的草坪燈、開關(guān)板、垃圾桶、消防玻璃、籃球架經(jīng)常被損壞,草坪樹木經(jīng)常被毀壞,如果我們?nèi)巳硕寄軔圩o(hù)它們,這些公物還會(huì)經(jīng)常損壞嗎?