然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過(guò)坡度得到∠ECF=30°,通過(guò)平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤(rùn)=每件的利潤(rùn)×銷(xiāo)售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開(kāi)口向下,對(duì)稱(chēng)軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷(xiāo)售該商品第45天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤(rùn)的計(jì)算方法,即利潤(rùn)=每件的利潤(rùn)×銷(xiāo)售的件數(shù),是解決問(wèn)題的關(guān)鍵.
如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類(lèi)型一】 利用二次函數(shù)求矩形面積的最大值
1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類(lèi)型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
方法總結(jié):解答此類(lèi)題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類(lèi)型三】 構(gòu)造直角三角形解決面積問(wèn)題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類(lèi)題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過(guò)中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類(lèi)型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常??紤]此定理.三、板書(shū)設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷比較簡(jiǎn)單分?jǐn)?shù)大小的過(guò)程,并能解決簡(jiǎn)單的實(shí)際問(wèn)題.設(shè)計(jì)本課時(shí),我注重為學(xué)生創(chuàng)設(shè)恰當(dāng)?shù)膮⑴c,實(shí)踐探究必備的空間,讓學(xué)生在主動(dòng)參與學(xué)習(xí)活動(dòng)的過(guò)程中,引導(dǎo)學(xué)生有效思考,撐握簡(jiǎn)單分?jǐn)?shù)大小比較的方法,活動(dòng)重在讓學(xué)生經(jīng)歷探索與發(fā)現(xiàn)的過(guò)程,使其在課堂中既有獲取知識(shí),能力也得到了培養(yǎng)。本科課堂教學(xué)我從學(xué)生感興趣的游戲和故事兩方面入手:游戲?qū)τ诤⒆右恢笔歉信d趣的話題,同分母分?jǐn)?shù)比較大小在了解分?jǐn)?shù)的意義之后,對(duì)于學(xué)生學(xué)習(xí)這一部分來(lái)說(shuō)是比較簡(jiǎn)單的,如何提高學(xué)生的學(xué)習(xí)興趣,我脫離書(shū)本這一載體設(shè)計(jì)了莫分?jǐn)?shù)比大小這一游戲,在課堂上學(xué)生自主地參與活動(dòng),通過(guò)讓學(xué)生動(dòng)手做、動(dòng)腦想:你想摸到幾顆棋子?為什么?、動(dòng)口說(shuō):比這個(gè)分?jǐn)?shù)大的分?jǐn)?shù)還有?比這個(gè)分?jǐn)?shù)小的分?jǐn)?shù)還有?,使學(xué)生在活動(dòng)中發(fā)現(xiàn)問(wèn)題分母相同的分?jǐn)?shù)如何比較大???尋求規(guī)律分母相同的分?jǐn)?shù)比較大小的方法。
為了幫助幼兒掌握教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),在活動(dòng)中始終以幼兒為主體。根據(jù)幼兒認(rèn)識(shí)過(guò)程的直觀形象性,遵循直觀性原則,主要采取視、聽(tīng)、講結(jié)合法來(lái)引導(dǎo)幼兒充分觀察鐘面的結(jié)構(gòu),時(shí)針和分針之間的運(yùn)轉(zhuǎn)關(guān)系;在活動(dòng)中遵循活性原則,綜合運(yùn)用發(fā)現(xiàn)法、游戲法,讓幼兒通過(guò)操作活動(dòng)、言語(yǔ)活動(dòng),促進(jìn)幼兒主動(dòng)學(xué)習(xí);遵循積極性原則,教師借助環(huán)境條件(實(shí)物投影儀)集圖象、色彩一體,激發(fā)幼兒學(xué)習(xí)的興趣;遵循個(gè)別性原則,對(duì)能力差的幼兒在看圖撥指針時(shí),教師注意加強(qiáng)輔導(dǎo),如:7:00時(shí),提醒幼兒分針在12上,時(shí)針在7上。
活動(dòng)過(guò)程1、猜謎語(yǔ)引出這節(jié)課的內(nèi)容。誰(shuí)?師:今天我們要認(rèn)識(shí)一個(gè)新朋友,請(qǐng)小朋友猜猜他是誰(shuí),滴答滴答,會(huì)走沒(méi)有腿,會(huì)說(shuō)沒(méi)有嘴,他會(huì)告訴我們,什么時(shí)候起,什么時(shí)候睡,大家猜猜他是誰(shuí)?引導(dǎo)幼兒學(xué)說(shuō):“鐘表”2、師:剛才的謎底是“鐘表”,請(qǐng)幼兒說(shuō)說(shuō)鐘表的用途,總結(jié)出鐘能告訴我們時(shí)間,人們的學(xué)習(xí)、生活、工作都離不開(kāi)它。今天老師就給小朋友們帶來(lái)了一位鐘表朋友。(出示制作的鐘表)3、引導(dǎo)幼兒觀察鐘表的表面。請(qǐng)小朋友仔細(xì)觀察鐘表,鐘表上都有什么呢?有數(shù)字寶寶,有針,請(qǐng)小朋友從小到大的順序讀一讀。1-123.。老師撥動(dòng)鐘表調(diào)時(shí)鈕,引導(dǎo)幼兒觀察時(shí)針和分針的區(qū)別。幼兒學(xué)說(shuō):“分針”“時(shí)針”“分針跑得快,時(shí)針跑得慢?!?/p>
幼兒園數(shù)學(xué)是一門(mén)系統(tǒng)性、邏輯性很強(qiáng)的學(xué)科,有著自身的特點(diǎn)和規(guī)律,密切聯(lián)系幼兒的生活,結(jié)合幼兒生活實(shí)際和知識(shí)經(jīng)驗(yàn)來(lái)設(shè)計(jì)數(shù)學(xué)活動(dòng)。此活動(dòng)選材來(lái)源于生活。我們都知道,鐘表是幼兒比較熟悉的東西之一。本節(jié)課要求幼兒對(duì)整點(diǎn)、半點(diǎn)的認(rèn)識(shí),是幼兒建立時(shí)間概念的初次嘗試,也為以后“時(shí)、分”的教學(xué)奠定了基礎(chǔ)。選擇此教材有一定的必要性,就如《綱要》中所說(shuō),“既符合幼兒的現(xiàn)實(shí)需要,又有利于其長(zhǎng)遠(yuǎn)發(fā)展;既貼近幼兒的生活,選擇感興趣的事物或問(wèn)題,又有助于拓展幼兒的經(jīng)驗(yàn)和視野”。一般來(lái)說(shuō),兒童每天起床、吃飯、上課都要按照一定的時(shí)間進(jìn)行,這樣在生活中潛移默化就感知到了時(shí)間這一抽象概念的存在。因此,此活動(dòng)來(lái)源于生活,又能服務(wù)于幼兒的生活。
【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過(guò)學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫(huà)y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫(huà)y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡(jiǎn)單的二次函數(shù)y=x2入手去研究
1.使學(xué)生掌握用描點(diǎn)法畫(huà)出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過(guò)配方確定拋物線的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過(guò)程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫(huà)出二次函數(shù)y=ax2+bx+c的圖象和通過(guò)配方確定拋物線的對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱(chēng)軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問(wèn)題1.你能說(shuō)出函數(shù)y=-4(x-2)2+1圖象的開(kāi)口方向、對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開(kāi)口向下,對(duì)稱(chēng)軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)
雨后天空的彩虹、河上架起的拱橋等都會(huì)形成一條曲線.問(wèn)題1:這些曲線能否用函數(shù)關(guān)系式表示?問(wèn)題2:如何畫(huà)出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類(lèi)型一】 二次函數(shù)y=x2和y=-x2的圖象的畫(huà)法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫(huà)出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說(shuō)出拋物線(1)(2)的對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)、開(kāi)口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對(duì)稱(chēng)軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對(duì)稱(chēng)軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫(huà)拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對(duì)稱(chēng)性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對(duì)稱(chēng)性畫(huà)另一側(cè).
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類(lèi)型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過(guò)y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開(kāi)口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)等)是解決問(wèn)題的關(guān)鍵.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類(lèi)型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對(duì)應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問(wèn)題轉(zhuǎn)化為求函數(shù)問(wèn)題,培養(yǎng)自己利用數(shù)學(xué)知識(shí)解答實(shí)際問(wèn)題的能力.三、板書(shū)設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長(zhǎng)AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開(kāi)口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長(zhǎng)有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來(lái)解.三、板書(shū)設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺(tái),還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),使課堂真正成為學(xué)生展示自我的舞臺(tái).充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問(wèn)題、解決問(wèn)題的獨(dú)到見(jiàn)解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
尊敬的各位評(píng)委、各位老師,大家好,我今天說(shuō)課的內(nèi)容是九年義務(wù)教育人教版小學(xué)數(shù)學(xué)一年級(jí)上冊(cè)第四單元《認(rèn)識(shí)圖形》的第一課時(shí)——認(rèn)識(shí)圖形。下面我將從說(shuō)教材、說(shuō)教法與學(xué)法、說(shuō)教學(xué)過(guò)程和說(shuō)板書(shū)設(shè)計(jì)這四方面來(lái)談?wù)勎覍?duì)本課的教學(xué)設(shè)想。一、說(shuō)教材: 1、教材分析 首先我對(duì)本教才進(jìn)行簡(jiǎn)單的分析,課程標(biāo)準(zhǔn)把空間與圖形作為義務(wù)教育階段培養(yǎng)學(xué)生初步創(chuàng)新精神和實(shí)踐能力的一個(gè)重要的學(xué)習(xí)內(nèi)容。《認(rèn)識(shí)圖行》是本冊(cè)教材《認(rèn)識(shí)圖形》的起始課,旨在認(rèn)識(shí)長(zhǎng)方體、正方體、圓柱和球這些立體圖形,認(rèn)識(shí)這幾種圖形有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生初步的觀察能力,動(dòng)手操作能力和交流能力。 2、說(shuō)教學(xué)目標(biāo) 依據(jù)一年級(jí)學(xué)生的心理特點(diǎn)和的認(rèn)知能力,我確定了以下教學(xué)目標(biāo): 1、知識(shí)與技能:通過(guò)觀察操作,初步認(rèn)識(shí)長(zhǎng)方體,正方體,球和圓柱體。 2、過(guò)程與方法:在觀察、操作、比較等活動(dòng)過(guò)程中,培養(yǎng)學(xué)生抽象、概括、實(shí)踐、創(chuàng)新能力,建立空間觀念。