探究活動8(教材第72頁):“結(jié)合生活事例,談談你在面對復雜事物時是如何分析和解決矛盾的?”這一探究活動是在學生還不了解主次矛盾的原理時,讓他們回憶自己在生活中有沒有遇到過面對許多矛盾時是如何解決的經(jīng)歷。比如,每天面對很多作業(yè),先做哪門課作業(yè)后做哪門作業(yè),你是如何考慮的?在學校面對學習、體育運動和社會工作,你是怎么安排的?在生活中,你遇到這樣的情況都是怎樣解決的?通過探究活動,使學生弄清主次矛盾的原理,學會用矛盾分析法分析問題。探究活動9(教材第73頁):“你在生活中是如何分析具體問題的?”這一探究活動,強調(diào)的是“你”在生活中是如何運用分析法分析具體問題的,要緊緊圍繞學生這一中心,首先強調(diào)具體問題具體分析的方法非常重要,這是馬克思主義的一個原則,是馬克思主義的活的靈魂。引導學生主動運用這種分析方法分析看待自己,分析看待社會??梢越M織學生進行討論、交流,還可以讓學生撰寫小論文,寫出自己運用這種分析方法分析了哪些具體問題,有哪些感受。
二是中國人口多、資源相對不足日益成為制約發(fā)展的突出矛盾。我國人均水資源擁有量僅為世界平均水平的1/4,600多個城市中,400多個缺水,其中110個嚴重缺水。我國人均耕地擁有量不到世界平均水平的40%。石油、天然氣、銅和鋁等重要礦產(chǎn)資源的人均儲量分別只占世界人均水平的8.3%、4.1%、25.5%、9.7%。三是我國這20年來經(jīng)濟快速發(fā)展,能源浪費大、環(huán)境破壞嚴重等問題日益凸顯,人與自然的矛盾從未像今天這樣突出。無序、無度的消耗,迅速透支我們寶貴的資源。以下是來自國家環(huán)保總局的一組沉甸甸的數(shù)據(jù)?!獜纳鲜兰o50到90年代,每年沙化土地擴大面積從560平方公里增加到2460平方公里,我國18個省的471個縣、近4億人口的耕地和家園正受到不同程度的荒漠化威脅?!?952年我國人均耕地2.82畝,2003年人均耕地減少到1.43畝,在各地轟轟烈烈的“圈地”熱潮中僅最近7年全國耕地就減少了1億畝,被占耕地大量閑置。
3、運用目標(1)運用所學知識說明世界真正的統(tǒng)一性就在于它的物質(zhì)性(2)運用所學知識及相關哲學原理,分析作為物質(zhì)觀發(fā)展的第一個基本階段,古代樸素唯物主義物質(zhì)觀的局限性,從分析論證中加深對辯證唯物主義物質(zhì)觀的科學性的理解(3)列舉實際事例,結(jié)合相關哲學原理,討論如果只承認運動的絕對性,而否認靜止的相對性會導致的結(jié)果,分析馬克思主義哲學為什么要堅持絕對運動與相對靜止的統(tǒng)一(4)世界是有規(guī)律的,規(guī)律是普遍的。列舉實際事例,分析任何事物都有其內(nèi)在的規(guī)律性,規(guī)律是客觀的,是不以人的意志為轉(zhuǎn)移的,但是人在規(guī)律目前并不是無能為力的二、能力目標1、培養(yǎng)學生自覺運用馬克思主義的物質(zhì)觀分析宇宙間一切事物及現(xiàn)象的能力2、鍛煉學生理論聯(lián)系實際的能力,培養(yǎng)學生正確認識世界的本質(zhì),并能夠自覺地按照客觀規(guī)律辦事的能力
①平動的物體一般可以看作質(zhì)點做平動的物體,由于物體上各點的運動情況相同,可以用一個點代表整個物體的運動,在這種情況下,物體的大小、形狀就無關緊要了,可以把整個物體當質(zhì)點。例如:平直公路上行駛的汽車,車身上各部分的運動情況相同,當我們把汽車作為一個整體來研究它的運動的時候,就可以把汽車當作質(zhì)點。當然,假如我們需要研究汽車輪胎的運動,由于輪胎上各部分運動情況不相同,那就不能把它看作質(zhì)點了。要注意的是:同一物體在不同情況下有時可看質(zhì)點,有時不可以看作質(zhì)點,一列火車從北京開到上海,研究火車的運行的時間,可將火車看成質(zhì)點,而火車過橋時,計算火車過橋的時間,不可以將火車看成質(zhì)點。②有轉(zhuǎn)動但轉(zhuǎn)動為次要因素例如:研究地球公轉(zhuǎn)時,可把地球看作質(zhì)點;研究地球自轉(zhuǎn)時,不能把地球看作質(zhì)點。③物體的形狀、大小可忽略再如:乒乓球旋轉(zhuǎn)對球的運動的較大的影響,運動員在發(fā)球、擊球時都要考慮,就不能把乒乓球簡單看作質(zhì)點。
(創(chuàng)設實例:多媒體播放視頻劉翔的110m欄。)1.提出問題:怎樣定量(準確)人描述車或劉翔所在的位置?2.提示:你的描述必須能反映物體(或人)的運動特點(直線)、運動方向、各點之間的距離等因素。3.總結(jié):①為了定量地描述物體的位置及位置的變化,需要在參考系上建立適當?shù)淖鴺讼?。坐標系是在參考系的基礎上抽象出來的概念,是抽象化的參考系。為了定量地描述物體的位置及位置的變化需要在參考系上建立適當?shù)淖鴺讼?,如果物體在一維空間運動,即沿一條直線運動,只需建立直線坐標系,就能準確表達物體的位置;如果物體在二維空間運動,即在同一平面運動,就需要建立平面直角坐標系來描述物體的位置;當物體在三維空間運動時,則需要建立三維坐標系。①一維坐標:描述物體在一條直線上運動,即物體做一維運動時,可以以這條直線為x軸,在直線上規(guī)定原點、正方向和單位長度,建立直線坐標系。如圖1-1-1所示,若某一物體運動到A點,此時它的位置坐標XA=3m,若它運動到B點,則此時它的坐標XB=-2m(“-”表示沿X軸負方向)。
一、說教材《質(zhì)點 參考系和坐標系》是人教版普通高中物理必修一第一章第一課的內(nèi)容。本節(jié)課主要介紹了質(zhì)點、參考系、坐標系的基本概念。通過本節(jié)課的學習為進一步學習后續(xù)課程起到了鋪墊的作用。根據(jù)上述教材的結(jié)構(gòu)和內(nèi)容分析,又考慮到高一年級學生的認知結(jié)構(gòu)及其心理特征,我制定了以下三維教學目標:1、知識與技能:知道質(zhì)點的概念及條件;知道參考系的概念及作用;掌握坐標系的簡單應用。2、過程與方法:促進學生自主學習,讓學生積極參與、樂于探究、勇于實驗、勤于思考,培養(yǎng)學生的科學探究能力。3、情感態(tài)度與價值觀:通過質(zhì)點 參考系和坐標系的學習,使學生了解生活與物理的關系,讓學生學會用科學的思維去看待事物。根據(jù)普通高中物理課程標準,并在吃透教材的基礎上,我確定了以下教學重點和難點:教學重點:質(zhì)點概念的建立。只有掌握了這一點才能更加準確的理解和掌握后續(xù)教材的相關內(nèi)容。
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認識變化的規(guī)律,這是提高學生直觀想象能力的一個重要的過程。為之后學習數(shù)學提供了更多角度的分析方法。培養(yǎng)和發(fā)展學生邏輯推理、數(shù)學直觀、數(shù)學抽象、和數(shù)學建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學交流能力;滲透類比等基本數(shù)學思想方法。
新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數(shù)學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準確歸納其性質(zhì)并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學運算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學建模:讓學生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點:應用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.
1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
二、培養(yǎng)員工的執(zhí)行力 建立完整的組織架構(gòu)、執(zhí)行步驟和制度建設?! ?、組織架構(gòu)層次清楚、責任明確。 2、挑選合適執(zhí)行人、明確目標期限、嚴格檢查、嚴守諾言和獎懲并存?! ?、建立完整的執(zhí)行流程制度。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結(jié) 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關系呢? c 圖1-7 當三角形為鈍角三角形時,不妨設角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標系,則 兩邊取與單位向量的數(shù)量積,得 由于設與角A,B,C相對應的邊長分別為a,b,c,故 即 所以 同理可得 即 當三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結(jié) 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領 學生 總結(jié) 20
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結(jié)為解三角形問題,經(jīng)常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本虾!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).
精講拓寬:師:(精講)英國位于大西洋中的不列顛島上,東、南隔北海、多佛爾海峽、英吉利海峽與歐洲大陸相望,具備了擴大海外貿(mào)易的得天獨厚的條件。新航路開辟以后,歐洲的商路和貿(mào)易中心發(fā)生了變化,主要商路從地中海轉(zhuǎn)移到大西洋沿岸。英國積極參與了海外貿(mào)易的競爭。請同學們思考:英國資本主義是怎樣發(fā)展起來的呢?生1:像荷蘭一樣,英國位于大西洋沿岸,具備了擴大海外貿(mào)易的得天獨厚的條件。生2:更主要的是英國政府組建了東印度公司,大力發(fā)展海外貿(mào)易,進行海外殖民擴張。生3:英國是島國,在資產(chǎn)階級革命以后建立起來的資產(chǎn)階級政府,十分重視海軍建設,為爭奪殖民地提供了軍事保障。生4:還有一個原因不能忽視,那就是英國的煤炭和羊毛資源豐富,手工業(yè)發(fā)達,為它的海外殖民活動奠定了雄厚的物質(zhì)基礎。師:(過渡)其實,英國資本主義的發(fā)展過程,就是它殖民霸權(quán)地位的確立過程,也就是與其他殖民國家不斷斗爭并取得勝利的過程。英國先后與哪些國家發(fā)生過爭奪戰(zhàn)爭呢?
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。