【教學目標】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學習,學會運用變量替換的方法,從而提升計算技能。【教學重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學難點】 利用變量替換解不等式或.【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖 *回顧思考 復習導入 問題 任意實數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數(shù),有 其幾何意義是:數(shù)軸上表示實數(shù)的點到原點的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結 引導 分析 了解 思考 回答 觀察 領會 復習 相關 知識 點為 進一 步學 習做 準備 充分 借助 圖像 進行 分析
課程:數(shù)學課題: 3.1.1函數(shù)的概念課型:講授課課時:2課時授課班級:2015級南口班授課時間:2016年3月1日授課地點:南口校區(qū)教 學 目 標知識目標1.能用函數(shù)語言描述圖像、解析式中自變量與函數(shù)值的依賴關系; 2.會計算函數(shù)的定義域,理解值域的含義 3.會用語言表述自變量與函數(shù)值間的對應關系能力目標通過對實例的分析,培養(yǎng)學生的觀察能力,抽象概括及邏輯思維能力 通過計算函數(shù)的定義域,培養(yǎng)學生的計算能力素養(yǎng)目標函數(shù)概念的思想蘊含了很多數(shù)學思維,也滲透生活中及其他學科范圍內,通過學習使學生認同函數(shù)的抽象性。教學重 點理解函數(shù)的概念教學難 點判斷兩個函數(shù)是否相同教學方 法引導啟發(fā),講練結合教學資 源演示文稿板 書 設 計3.1函數(shù)的概念 設集合A、B為非空數(shù)集,對于確定的對 應法則f下,在集合A中取定任意一個數(shù)x, 在集合B中都有唯一確定的數(shù)f(x)與之相 對應,則稱f:A→B為集合A到集合B的一 個函數(shù). 記作:y=f(x),x∈A X叫自變量,y叫函數(shù)值,集合A叫函數(shù)的 定義域,所有函數(shù)值組成的集合叫值域。
【教學目標】知識目標:⑴ 理解函數(shù)的單調性與奇偶性的概念;⑵ 會借助于函數(shù)圖像討論函數(shù)的單調性;⑶理解具有奇偶性的函數(shù)的圖像特征,會判斷簡單函數(shù)的奇偶性.能力目標:⑴ 通過利用函數(shù)圖像研究函數(shù)性質,培養(yǎng)學生的觀察能力;⑵ 通過函數(shù)奇偶性的判斷,培養(yǎng)學生的數(shù)學思維能力.【教學重點】⑴ 函數(shù)單調性與奇偶性的概念及其圖像特征;⑵ 簡單函數(shù)奇偶性的判定.【教學難點】函數(shù)奇偶性的判斷.(*函數(shù)單調性的判斷)【教學設計】(1)用學生熟悉的主題活動將所學的知識有機的整合在一起;(2)引導學生去感知數(shù)學的數(shù)形結合思想.通過圖形認識特征,由此定義性質,再利用圖形(或定義)進行性質的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學生的思維能力.【教學備品】教學課件.【課時安排】3課時.(90分鐘)【教學過程】
教學內容4.4.1 對數(shù)函數(shù)及其圖像與性質教學時間 (不超過3課時)2課時授課類型新授課班級 日期 教學目標知識目標:掌握對數(shù)函數(shù)的概念,圖象和性質,并會簡單的應用.能力目標:觀察對數(shù)函數(shù)的圖像,總結對數(shù)函數(shù)的性質,培養(yǎng)觀察能力.情感目標:)體味對數(shù)函數(shù)的認知過程,樹立嚴謹?shù)乃季S習慣.教學重點對數(shù)函數(shù)的圖像及性質.教學難點對數(shù)函數(shù)圖象和性質的發(fā)現(xiàn)過程,培養(yǎng)數(shù)形結合的思想.教法學法這節(jié)課主要采用啟發(fā)式和引導發(fā)現(xiàn)式的教學方法。⑴ 實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結合,有助于觀察得到指數(shù)函數(shù)的性質; ⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;通過教師在教學過程中的點撥,啟發(fā)學生通過主動觀察、主動思考、動手操作、自主探究來達到對知識的發(fā)現(xiàn)和接受.課前準備1.備教材、備學生 2.PPT課件 3.五環(huán)四步教學模式教案教 學 過 程環(huán)節(jié)教師活動師生活動預期效果一環(huán) 學情 動員某種物質的細胞分裂,由1個分裂成2個,2個分裂成4個,……,那么,知道分裂得到的細胞個數(shù)如何求得分裂次數(shù)呢? 設1個細胞經過y次分裂后得到x個細胞,則x與y的函數(shù)關系是,寫成對數(shù)式為,此時自變量x位于真數(shù)位置.師:根據(jù)式,給定一個x值(經過的次數(shù)),就能計算出唯一的函數(shù)值y.實際上,在這個問題中知道的是y的值,要求的是對應的x值.所以用對數(shù)形式表示, 通常我們用x表示自變量,用y表示因變量, 易于學生想象領會函數(shù)意義二環(huán)問題 診斷一般地,形如的函數(shù)叫以為底的對數(shù)函數(shù),其中a>0且a≠1.對數(shù)函數(shù)的定義域為,值域為R. 例如、、都是對數(shù)函數(shù). 教師引導學生聯(lián)系上面“情景問題”的表達式,請同學們思考討論對數(shù)函數(shù)的概念. 師:(1) 為什么規(guī)定 a>0且 a≠1? (2) 為什么對數(shù)函數(shù)的定義域是(0,+∞)? 指導體會對數(shù)函數(shù)的特點。讓學生牢記底數(shù)大于零且不等于1,真數(shù)大于零.
課程分析中專數(shù)學課程教學是專業(yè)建設與專業(yè)課程體系改革的一部分,應與專業(yè)課教學融為一體,立足于為專業(yè)課服務,解決實際生活中常見問題,結合中專學生的實際,強調數(shù)學的應用性,以滿足學生在今后的工作崗位上的實際應用為主,這也體現(xiàn)了新課標中突出應用性的理念。分段函數(shù)的實際應用在本課程中的地位:(1) 函數(shù)是中專數(shù)學學習的重點和難點,函數(shù)的思想貫穿于整個中專數(shù)學之中,分段函數(shù)在科技和生活的各個領域有著十分廣泛的應用。(2) 本節(jié)所探討學習分段函數(shù)在生活生產中的實際問題上應用,培養(yǎng)學生分析與解決問題的能力,養(yǎng)成正確的數(shù)學化理性思維的同時,形成一種意識,即數(shù)學“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學計劃,函數(shù)的實際應用舉例內容安排在第三章函數(shù)的最后一部分講解。本節(jié)內容是在學生熟知函數(shù)的概念,表示方法和對函數(shù)性質有一定了解的基礎上研究分段函數(shù),同時深化學生對函數(shù)概念的理解和認識,也為接下來學習指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學生實際情況,由生活生產中的實際問題入手,求得分段函數(shù)此部分知識以學生生活常識為背景,可以引導學生分析得出。
課題名稱4.1實數(shù)指數(shù)冪授課班級 授課時間13機電1課題序號 授課課時第 到 授課形式啟發(fā)、類比使用教具課件教學目的1.識記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分數(shù)指數(shù)冪的定義,會進行根式與分數(shù)指數(shù)冪的互化。 3.識記有理數(shù)指數(shù)冪的運算性質,會進行簡單的有理數(shù)指數(shù)冪的運算。教學重點有理數(shù)指數(shù)冪的運算、實數(shù)指數(shù)冪的綜合運算教學難點有理數(shù)指數(shù)冪的運算、實數(shù)指數(shù)冪的綜合運算更新、補 充、刪減 內容無課外作業(yè) 1.P 96 習題。 授課主要內容或板書設計實數(shù)指數(shù)冪 概念 思考交流 例題 課堂小結 問題解決 練習 教學后記
【教學目標】知識目標:⑴ 理解指數(shù)函數(shù)的圖像及性質;⑵ 了解指數(shù)模型,了解指數(shù)函數(shù)的應用.能力目標:⑴ 會畫出指數(shù)函數(shù)的簡圖;⑵ 會判斷指數(shù)函數(shù)的單調性;⑶了解指數(shù)函數(shù)在生活生產中的部分應用,從而培養(yǎng)學生分析與解決問題能力.【教學重點】⑴ 指數(shù)函數(shù)的概念、圖像和性質;⑵ 指數(shù)函數(shù)的應用實例.【教學難點】指數(shù)函數(shù)的應用實例.【教學設計】⑴ 以實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結合,有助于觀察得到指數(shù)函數(shù)的性質;⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;⑷實際問題的解決,培養(yǎng)學生分析與解決問題的能力;⑸以小組的形式進行討論、探究、交流,培養(yǎng)團隊精神.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 4.2指數(shù)函數(shù). *創(chuàng)設情景 興趣導入 問題 某種物質的細胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,知道分裂的次數(shù),如何求得細胞的個數(shù)呢? 解決 設細胞分裂次得到的細胞個數(shù)為,則列表如下: 分裂次數(shù)x123…x…細胞個數(shù)y2=4=8=…… 由此得到, . 歸納 函數(shù)中,指數(shù)x為自變量,底2為常數(shù). 介紹 播放 課件 質疑 引導 分析 了解 觀看 課件 思考 領悟 導入 實例 比較 易于 學生 想象 歸納 領會 函數(shù) 的變 化意 義 5
課 程數(shù)學章節(jié)內容 課程類型新課課時安排2課時指導教師 日期12月 7 日學習目標掌握用弧度表示角度的大小學習重點掌握用弧度表示角的方法學習難點弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學內容:任意角度的推廣、終邊相等的角的表示方法; 2、已經學過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數(shù),負角的弧度為_____數(shù),零角的弧度為零。 3、由弧度的定義可知,當角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉化為弧度制?如何將弧度制轉化為角度制?(結合實例講解)練習(通過練習固要點)1、練習5.2.1; 2、例3;展示(通過展示強能力)(25分鐘)(包括學生展示回顧、問題、練習、小組總結等部分)1、引導各小組展示學習成果,在有各小組長指定小組成員展示,結束后,該組組長須總結或指定其他成員進行總結。 2、展示過程中,提醒同學注意老師的板書,或者請老師進行總結,或題目的講解。
創(chuàng)設情景 興趣導入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當取定義域內的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
教學目標:知識與能力目標:1.能夠借助三角函數(shù)的定義及單位圓推導出三角函數(shù)的誘導公式 2.能夠運用誘導公式,把任意角的三角函數(shù)的化簡、求值問題轉化為銳角的三角函數(shù)的化簡、求值問題情感目標:1.通過誘導公式的探求,培養(yǎng)學生的探索能力、鉆研精神和科學態(tài)度 2.通過誘導公式探求工程中的合作學習,培養(yǎng)學生團結協(xié)作的精神; 3. 通過誘導公式的運用,培養(yǎng)學生的劃歸能力,提高學生分析問題和解決問題的能力。 一導入:二、自學(閱讀教材第110---112頁,回答下列問題) 在直角坐標系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關于軸的對稱點的特征: 。對于角而言:角關于軸對稱的角為_______公式二:__________ _________ _________
課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質和推論,會應用定理和推論解釋生活中的一些現(xiàn)象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當?shù)姆柋硎军c、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差
【教學目標】1. 理解數(shù)列的通項公式的意義,能根據(jù)通項公式寫出數(shù)列的任意一項,以及根據(jù)其前幾項寫出它的一個通項公式.2. 了解數(shù)列的遞推公式,會根據(jù)數(shù)列的遞推公式寫出前幾項.3.培養(yǎng)學生積極參與、大膽探索的精神,培養(yǎng)學生的觀察、分析、歸納的能力.教學重點 數(shù)列的通項公式及其應用.教學難點 根據(jù)數(shù)列的前幾項寫出滿足條件的數(shù)列的一個通項公式.教學方法 本節(jié)課主要采用例題解決法.通過列舉實例,進一步研究數(shù)列的項與序號之間的關系.通過三類題目,使學生深刻理解數(shù)列通項公式的意義,為以后學習等差數(shù)列與等比數(shù)列打下基礎.【教學過程】 環(huán)節(jié)教學內容師生互動設計意圖導 入⒈數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列. 注意:(1)數(shù)列中的數(shù)是按一定次序排列的; (2)同一個數(shù)在數(shù)列中可以重復出現(xiàn). 2. 數(shù)列的一般形式 數(shù)列a1,a2,a3,…,an,…,可記作{ an }. 3. 數(shù)列的通項公式: 如果數(shù)列{ an }的第n項an與n之間的關系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的通項公式. 教師引導學生復習. 為學生進一步理解通項公式,應用通項公式解決實際問題做好準備.
系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.
授課 日期 班級16高造價 課題: §6.3等比數(shù)列 教學目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項公式; 3.掌握等比數(shù)列前 n 項和公式及推導過程,能用公式求相關參數(shù); 教學重點、難點:運用等比數(shù)列的通項公式求相關參數(shù) 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》 授課執(zhí)行情況及分析: 板書設計或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學生板書區(qū)) 2. 等比數(shù)列的通項公式 3.等比數(shù)列的求和公式
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(二) *創(chuàng)設情境 興趣導入 【問題】 平面內兩條既不重合又不平行的直線肯定相交.如何求交點的坐標呢? 圖8-12 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標. 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領 學生 分析 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數(shù)在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上海→北京,上?!貞c. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件