集合的基本運算(1) 一、教學(xué)目標(biāo) 1、 知識與技能 (1)理解并集和交集的含義,會求兩個簡單集合的交集與并集。 (2)能夠使用Venn圖表達兩個集合的運算,體會直觀圖像對抽象概念理解的作用。 2、過程與方法 (1)進一步體會類比的作用 。 (2) 進一步樹立數(shù)形結(jié)合的思想。 3、情感態(tài)度與價值觀 集合作為一種數(shù)學(xué)語言,讓學(xué)生體會數(shù)學(xué)符號化表示問題的簡潔美。 二、教學(xué)重點與難點 教學(xué)重點:并集與交集的含義 。 教學(xué)難點:理解并集與交集的概念,符號之間的區(qū)別與聯(lián)系。
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.1 不等式的基本性質(zhì)教 學(xué) 目 標(biāo)知識目標(biāo):1、理解不等式的概念 2、掌握不等式的基本性質(zhì) 技能目標(biāo):1、會比較兩個數(shù)的大小 2、會用做差法比較兩個整式的大小 情感目標(biāo):體會不等式在日常生活中的應(yīng)用,感受數(shù)學(xué)的有用性教學(xué) 重點 和 難點 重點: 不等式的概念和基本性質(zhì) 難點: 1、會比較兩個整式的大小 2、能根據(jù)應(yīng)用題的表述,列出相應(yīng)的表達式教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.1課后記
【課題】1.1 集合的概念【教學(xué)目標(biāo)】1、理解集合、元素的概念及其關(guān)系,掌握常用數(shù)集的字母表示;2、掌握集合的列舉法與描述法,會用適當(dāng)?shù)姆椒ū硎炯希?、通過集合語言的學(xué)習(xí)與運用,培養(yǎng)分類思維和有序思維,從而提升數(shù)學(xué)思維能力.4、接受集合語言,經(jīng)歷利用集合語言描述元素與集合間關(guān)系的過程,養(yǎng)成規(guī)范意識,發(fā)展嚴(yán)謹(jǐn)?shù)淖黠L(fēng)?!窘虒W(xué)重點】集合的表示法. 【教學(xué)難點】集合表示法的選擇與規(guī)范書寫.【教學(xué)設(shè)計】(1)通過生活中的實例導(dǎo)入集合與元素的概念;(2)引導(dǎo)學(xué)生自然地認(rèn)識集合與元素的關(guān)系;(3)針對集合不同情況,認(rèn)識到可以用列舉和描述兩種方法表示集合,然后再對表示法進行對比分析,完成知識的升華;(4)通過練習(xí),鞏固知識.(5)依照學(xué)生的認(rèn)知規(guī)律,順應(yīng)學(xué)生的學(xué)習(xí)思路展開,自然地層層推進教學(xué).
課 程數(shù)學(xué)章節(jié)內(nèi)容5.1角的概念推廣課程類型新課課時安排2課時指導(dǎo)教師 日期12月2 日學(xué)習(xí)目標(biāo)理解將角度從0°~360°推廣任意角。學(xué)習(xí)重點掌握角的度量、任意角學(xué)習(xí)難點理解象限角、界限角和終邊相同的角回顧(溫故知新)1、角度的概念:什么是角?始邊、終邊、頂點。 問題(順著問題找思路)1、正角.負角.零角.界限角和第幾象限的角概念?按照逆時針方向旋轉(zhuǎn)所形成的角叫做________,按照_____時針旋轉(zhuǎn)所形成的角叫負角。當(dāng)射線沒有作任何旋轉(zhuǎn)時,形成的角叫________(結(jié)合圖形講解) 2、在坐標(biāo)系中依次表示390°、30°、-330°,觀察圖像,探討終邊相等的角的特點、有什么關(guān)系?思考如何用集合表示終邊相等的角度?
學(xué)科數(shù)學(xué) 課 題 1.2 集合之間的關(guān)系班級 人數(shù) 授課時數(shù)2 課 型新課 周次 授課時間 教 學(xué) 目 的 知識目標(biāo):(1)掌握子集、真子集的概念; (2)掌握兩個集合相等的概念; (3)會判斷集合之間的關(guān)系. 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動,學(xué)生之間的討論分析,加強合作意識。 教學(xué)重點集合與集合間的關(guān)系及其相關(guān)符號表示. 教學(xué)難點真子集概念的理解.
學(xué)科數(shù)學(xué) 課 題 1.4 充要條件班級 人數(shù) 授課時數(shù) 2 課 型 新授課 周次 授課時間 教 學(xué) 目 的 知識目標(biāo):了解“充分條件”、“必要條件”及“充要條件” 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動,學(xué)生之間的討論分析,加強合作意識。 教學(xué)重點“充分條件”、“必要條件”及“充要條件”.教學(xué)難點符號“”,“”,“”的正確使用. 教 具 教 后 小 結(jié) 學(xué)生是否真正理解有關(guān)知識; 是否能利用知識、技能解決問題; 在知識、技能的掌握上存在哪些問題。
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應(yīng) 技能目標(biāo):1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結(jié)合圖像寫出一元二次不等式的解集 情感目標(biāo):體會知識之間的相互關(guān)聯(lián)性,體會數(shù)形結(jié)合思想的重要性教學(xué) 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點: 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識點融會貫通,數(shù)形結(jié)合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點】 一元二次不等式的解法。【教學(xué)設(shè)計】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時安排】 2課時(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標(biāo)是什么?(3)當(dāng)y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.4 含絕對值的不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解絕對值的幾何意義 2、掌握簡單的含絕對值不等式的解法 3、掌握含絕對值不等式的等價形式 技能目標(biāo):1、會解形如|ax+b|>c或|ax+b|<c的絕對值不等式 情感目標(biāo):通過學(xué)習(xí),體會數(shù)形結(jié)合、整體代換及等價轉(zhuǎn)換的數(shù)學(xué)思想方法教學(xué) 重點 和 難點重點: 1、絕對值的幾何意義 2、基本絕對值不等式|x|>a或|x|<a的解 難點: 1、去絕對值符號后不等式與原不等式保持等價性教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.4課后記不等式的基本性質(zhì)是初中就學(xué)習(xí)過的內(nèi)容,分式不等式的解法是哦本節(jié)課的一個重點和難點,尤其是不等號另一邊不為0的情況,需要移項,這一點在強調(diào)前學(xué)生考慮不到,因此解題錯誤多。區(qū)間是個新內(nèi)容,學(xué)生往往將連續(xù)的正數(shù)寫作一個區(qū)間,這是常見的錯誤,要進行提醒。另外,在均值不等式這里稍微補充了一些內(nèi)容,引起學(xué)生的興趣。
【教學(xué)目標(biāo)】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學(xué)習(xí),學(xué)會運用變量替換的方法,從而提升計算技能?!窘虒W(xué)重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學(xué)難點】 利用變量替換解不等式或.【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *回顧思考 復(fù)習(xí)導(dǎo)入 問題 任意實數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數(shù),有 其幾何意義是:數(shù)軸上表示實數(shù)的點到原點的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結(jié) 引導(dǎo) 分析 了解 思考 回答 觀察 領(lǐng)會 復(fù)習(xí) 相關(guān) 知識 點為 進一 步學(xué) 習(xí)做 準(zhǔn)備 充分 借助 圖像 進行 分析
課 程數(shù)學(xué)章節(jié)內(nèi)容 課程類型新課課時安排2課時指導(dǎo)教師 日期12月 7 日學(xué)習(xí)目標(biāo)掌握用弧度表示角度的大小學(xué)習(xí)重點掌握用弧度表示角的方法學(xué)習(xí)難點弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學(xué)內(nèi)容:任意角度的推廣、終邊相等的角的表示方法; 2、已經(jīng)學(xué)過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數(shù),負角的弧度為_____數(shù),零角的弧度為零。 3、由弧度的定義可知,當(dāng)角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉(zhuǎn)化為弧度制?如何將弧度制轉(zhuǎn)化為角度制?(結(jié)合實例講解)練習(xí)(通過練習(xí)固要點)1、練習(xí)5.2.1; 2、例3;展示(通過展示強能力)(25分鐘)(包括學(xué)生展示回顧、問題、練習(xí)、小組總結(jié)等部分)1、引導(dǎo)各小組展示學(xué)習(xí)成果,在有各小組長指定小組成員展示,結(jié)束后,該組組長須總結(jié)或指定其他成員進行總結(jié)。 2、展示過程中,提醒同學(xué)注意老師的板書,或者請老師進行總結(jié),或題目的講解。
教學(xué)目標(biāo):知識與能力目標(biāo):1.能夠借助三角函數(shù)的定義及單位圓推導(dǎo)出三角函數(shù)的誘導(dǎo)公式 2.能夠運用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角的三角函數(shù)的化簡、求值問題情感目標(biāo):1.通過誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度 2.通過誘導(dǎo)公式探求工程中的合作學(xué)習(xí),培養(yǎng)學(xué)生團結(jié)協(xié)作的精神; 3. 通過誘導(dǎo)公式的運用,培養(yǎng)學(xué)生的劃歸能力,提高學(xué)生分析問題和解決問題的能力。 一導(dǎo)入:二、自學(xué)(閱讀教材第110---112頁,回答下列問題) 在直角坐標(biāo)系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關(guān)于軸的對稱點的特征: 。對于角而言:角關(guān)于軸對稱的角為_______公式二:__________ _________ _________
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設(shè)向量、與x軸正半軸的夾角分別為和,則點A的坐標(biāo)為(),點B的坐標(biāo)為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導(dǎo)公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系. 總結(jié) 歸納 仔細 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 25
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標(biāo). 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領(lǐng) 分析 仔細 分析 講解 關(guān)鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時,不妨設(shè)角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對應(yīng)的邊長分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結(jié) 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值