提供各類精美PPT模板下載
當前位置:首頁 > Word模板 > 教育教學(xué) > 課件教案> 北師大初中九年級數(shù)學(xué)下冊切線長定理教案
  • 收藏模板
    下載模板
  • 模板信息
  • 更新時間:2023-11-20
  • 字數(shù):約3387字
  • 頁數(shù):約5頁
  • 格式:.doc
  • 推薦版本:Office2016及以上版本
  • 售價:5 金幣 / 會員免費

您可能喜歡的文檔

  • 北師大初中九年級數(shù)學(xué)下冊切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級數(shù)學(xué)下冊切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級數(shù)學(xué)下冊直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.

  • 北師大初中九年級數(shù)學(xué)下冊垂徑定理教案

    北師大初中九年級數(shù)學(xué)下冊垂徑定理教案

    方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.

  • 北師大版初中數(shù)學(xué)九年級下冊切線長定理說課稿

    北師大版初中數(shù)學(xué)九年級下冊切線長定理說課稿

    通過與學(xué)生講解切線長定義,讓學(xué)生在參與、合作中有一個猜想,再進一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學(xué)的方法加以證明。問題的解決,使學(xué)生既能解決新的問題,同時應(yīng)用到全等、切線的性質(zhì)等知識,同時三條輔助線中,兩條運用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學(xué)習學(xué)生們已經(jīng)對切線長定理有了較深刻的了解。為了加深學(xué)生對定理的認識并培養(yǎng)學(xué)生的應(yīng)用意識學(xué)習例1、例2。例1讓學(xué)生自己獨立完成,加深對切線長定理的理解,老師進行點評,對于例2,由師生共同分析完成,交進行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識體系中,使學(xué)生的知識體系得到補充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識。

  • 北師大初中數(shù)學(xué)九年級上冊相似三角形判定定理的證明1教案

    北師大初中數(shù)學(xué)九年級上冊相似三角形判定定理的證明1教案

    當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應(yīng)邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵學(xué)生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識.

  • 查看更多相關(guān)Word文檔

切線長定理教案

1.理解切線長的定義;(重點)

2.掌握切線長定理并能運用切線長定理解決問題.(難點)

一、情境導(dǎo)入

如圖①,PA為⊙O的一條切線,點A為切點.如圖②所示,沿著直線PO將紙對折,由于直線PO經(jīng)過圓心O,所以PO是圓的一條對稱軸,兩半圓重合.設(shè)與點A重合的點為點B,這里,OB是⊙O的一條半徑,PB是⊙O的一條切線.圖中PA與PB、∠APO與∠BPO有什么關(guān)系?

課件教案

二、合作探究

探究點:切線長定理

【類型一】利用切線長定理求線段的長

課件教案 如圖,從⊙O外一點P引圓的兩條切線PA、PB,切點分別是點A和點B,如果∠APB=60,線段PA=10,那么弦AB的長是()

A.10

B.12

C.5

D.10

解析:∵PA、PB都是⊙O的切線,∴PA=PB.∵∠APB=60,∴△PAB是等邊三角形,∴AB=PA=10.故選A.

方法總結(jié):切線長定理是在圓中判斷線段相等的主要依據(jù),經(jīng)常用到.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課堂達標訓(xùn)練”第4題

【類型二】利用切線長定理求角的度數(shù)

課件教案 如圖,PA、PB是⊙O的切線,切點分別為A、B,點C在⊙O上,如果∠ACB=70,那么∠OPA的度數(shù)是________度.

解析:如圖所示,連接OA、OB.∵PA、PB是⊙O的切線,切點分別為A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90.又∵∠AOB=2∠ACB=140,∴∠APB=360-∠PAO-∠AOB-∠OBP=360-90-140-90=40.易證△POA≌△POB,∴∠OPA=∠APB=20.故答案為20.

方法總結(jié):由公共點引出的兩條切線,可以運用切線長定理得到等腰三角形.另外根據(jù)全等的判定,可得到PO平分∠APB.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課堂達標訓(xùn)練”第3題

【類型三】利用切線長定理求三角形的周長

課件教案 如圖,PA、PB、DE是⊙O的切線,切點分別為A、B、F,已知PO=13cm,⊙O的半徑為5cm,求△PDE的周長.

解析:連接OA,根據(jù)切線的性質(zhì)定理,得OA⊥PA.根據(jù)勾股定理,得PA=12,再根據(jù)切線長定理即可求得△PDE的周長.

解:連接OA,則OA⊥PA.在Rt△APO中,PO=13cm,OA=5cm,根據(jù)勾股定理,得AP=12cm.∵PA、PB、DE是⊙O的切線,∴PA=PB,DA=DF,EF=EB,∴△PDE的周長PD+DE+PE=PD+DF+FE+PE=PD+DA+EB+PE=PA+PB=2PA=24cm.

方法總結(jié):從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線,平分兩條切線的夾角.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課后鞏固提升”第4題

【類型四】利用切線長定理解決圓外切四邊形的問題

課件教案 如圖,四邊形ABCD的邊與圓O分別相切于點E、F、G、H,判斷AB、BC、CD、DA之間有怎樣的數(shù)量關(guān)系,并說明理由.

解析:直接利用切線長定理解答即可.

解:AD+BC=CD+AB,理由如下:∵四邊形ABCD的邊與圓O分別相切于點E、F、G、H,∴DH=DG,CG=CF,BE=BF,AE=AH,∴AH+DH+CF+BF=DG+GC+AE+BE,即AD+BC=CD+AB.

方法總結(jié):由切線長定理可以得到一些相等的線段,一定要明確這些相等線段.記住“圓外切四邊形的對邊之和相等”,對我們以后解決問題有很大幫助.

變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習“課堂達標訓(xùn)練”第4題

【類型五】切線長定理與三角形內(nèi)切圓的綜合

課件教案 如圖,在△ABC中,AB=AC,⊙O是△ABC的內(nèi)切圓,它與AB、BC、CA分別相切于點D、E、F.

(1)求證:BE=CE;

(2)若∠A=90,AB=AC=2,求⊙O的半徑.

解析:(1)利用切線長定理得出AD=AF,BD=BE,CE=CF,進而得出BD=CF,即可得出答案;

(2)首先連接OD、OE、OF,進而利用切線的性質(zhì)得出∠ODA=∠OFA=∠A=90,進而得出四邊形ODAF是正方形,再利用勾股定理求出⊙O的半徑.

(1)證明:∵⊙O是△ABC的內(nèi)切圓,∴AD=AF,BD=BE,CE=CF.∵AB=AC,∴AB-AD=AC-AF,即BD=CF,∴BE=CE;

(2)解:連接OD、OE、OF,∵⊙O是△ABC的內(nèi)切圓,切點為D、E、F,∴∠ODA=∠OFA=∠A=90.又∵OD=OF,∴四邊形ODAF是正方形.設(shè)OD=AD=AF=r,則BE=BD=CF=CE=2-r.在△ABC中,∠A=90,∴BC==2.又∵BC=BE+CE,∴(2-r)+(2-r)=2,得r=2-,∴⊙O的半徑是2- .

方法總結(jié):本題綜合考查了正方形的判定以及切線長定理和勾股定理等知識,解決問題的關(guān)鍵是得出四邊形ODAF是正方形.

【類型六】利用切線長定理解決存在性問題

課件教案 如圖①,已知正方形ABCD的邊長為2,點M是AD的中點,P是線段MD上的一動點(P不與M,D重合),以AB為直徑作⊙O,過點P作⊙O的切線交BC于點F,切點為E.

(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線段(不能添加字母和輔助線)?

(2)求四邊形CDPF的周長;

(3)延長CD,F(xiàn)P相交于點G,如圖②所示.是否存在點P,使BFFG=CFOF?如果存在,試求此時AP的長;如果不存在,請說明理由.

解析:(1)根據(jù)切線長定理得到FB=FE,PE=PA;(2)根據(jù)切線長定理,發(fā)現(xiàn)該四邊形的周長等于正方形的三邊之和;(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30的直角三角形的知識進行計算.

解:(1)FB=FE,PE=PA;

(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23=6;

(3)假設(shè)存在點P,使BFFG=CFOF.∴=.∵cos∠OFB=,cos∠GFC=,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60,∴在Rt△OFB中,BF===1.在Rt△GFC中,∵CG=CFtan∠GFC=CFtan60=(2-1)=6-,∴DG=CG-CD=6-3,∴DP=DGtan∠PGD=DGtan30=2-3,∴AP=AD-DP=2-(2-3)=3.


最新課件教案文檔
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學(xué)習態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習勁頭足,聽課又專注 ,做事更認 真 ,你是同學(xué)們學(xué)習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習領(lǐng)悟力,學(xué)習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習上還要有持久的恒心和頑強的毅力。

  • 公司2024第一季度意識形態(tài)工作聯(lián)席會議總結(jié)

    公司2024第一季度意識形態(tài)工作聯(lián)席會議總結(jié)

    一是要把好正確導(dǎo)向。嚴格落實主體責任,逐條逐項細化任務(wù),層層傳導(dǎo)壓力。要抓實思想引領(lǐng),把理論學(xué)習貫穿始終,全身心投入主題教育當中;把理論學(xué)習、調(diào)查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風、以學(xué)促干方面取得實實在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領(lǐng),要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻。二是要加強應(yīng)急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標桿礦井”、建設(shè)“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應(yīng)對。加強職工群眾熱點問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計劃

    二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點,科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應(yīng)和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅強有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標同向、部署同步、工作同力。三是加強高素質(zhì)專業(yè)化黨員隊伍管理。配齊配強支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報告

    XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報告

    二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實際情況,全面了解群眾的真實需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風貌和活力。

  • 交通運輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進會上的匯報發(fā)言

    交通運輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進會上的匯報發(fā)言

    今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結(jié)合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質(zhì)量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計劃一是完善基層公共文化服務(wù)管理標準化模式,持續(xù)在公共文化服務(wù)精準化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機構(gòu)審批工作,結(jié)合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學(xué)習態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習勁頭足,聽課又專注 ,做事更認 真 ,你是同學(xué)們學(xué)習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應(yīng)該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學(xué),誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學(xué)習領(lǐng)悟力,學(xué)習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習上還要有持久的恒心和頑強的毅力。

  • “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    (二)堅持問題導(dǎo)向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務(wù)公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應(yīng)新時代人民群眾對政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結(jié)作風整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質(zhì)效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。

  • 2024年度工作計劃匯編(18篇)

    2024年度工作計劃匯編(18篇)

    1.市政基礎(chǔ)設(shè)施項目5項,總建設(shè)里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關(guān)工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學(xué)院配套道路項目在黃麓鎮(zhèn)完成圍墻建設(shè)后即可進場施工。2.公益性建設(shè)項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學(xué)擴建工程已完成施工、監(jiān)理招標掛網(wǎng),2月上旬完成全部招標工作;合肥職業(yè)技術(shù)學(xué)院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結(jié)合醫(yī)院)新建工程正在按照既定計劃推進,預(yù)計4月中下旬掛網(wǎng)招標。

  • 駐村工作隊2024年第一季度工作總結(jié)匯編(4篇)

    駐村工作隊2024年第一季度工作總結(jié)匯編(4篇)

    三是做大做強海產(chǎn)品自主品牌。工作隊于xx年指導(dǎo)成立的冬松村海產(chǎn)品合作社,通過與消費幫扶平臺合作,在工作隊各派出單位、社會團體、個人支持下,已獲得逾xx萬元銷售額。2022年底工作隊推動合作社海產(chǎn)品加工點擴建的工作方案已獲批,待資金下?lián)芎髮⒄絾訑U建工作。四是積極助企紓困,帶動群眾增收致富。工作隊利用去年建立的xx鎮(zhèn)產(chǎn)業(yè)發(fā)展工作群,收集本地企業(yè)在產(chǎn)品銷售、技術(shù)、人力、資金、運營、用地等方面的需求,并加大xx支持鄉(xiāng)村振興力度,xx助理赴各村委開展多場xx政策支持鄉(xiāng)村振興宣講活動,本季度有x萬元助農(nóng)貸款獲批,xx萬貸款正在審批中。在壯大既有產(chǎn)業(yè)的同時,完善聯(lián)農(nóng)帶農(nóng)機制,一方面鼓勵企業(yè)雇用本地農(nóng)戶就業(yè),另一方面計劃與本地農(nóng)戶簽訂長期收購合同,讓農(nóng)民種得放心、種得安心,帶動當?shù)厝罕姽餐赂弧?/p>

  • 主題教育總結(jié)常用提綱大全

    主題教育總結(jié)常用提綱大全

    第一,主題教育是一次思想作風的深刻洗禮,初心傳統(tǒng)進一步得到回歸。第二,主題教育是一次沉疴積弊的集中清掃,突出問題進一步得到整治。第三,主題教育是一次強化為民服務(wù)的生動實踐,赤子之情進一步得到提振。第四,主題教育是一次激發(fā)創(chuàng)業(yè)擔當?shù)挠欣鯔C,發(fā)展層次進一步得到提升。2.第一,必須提領(lǐng)思想、武裝思想。第二,必須聚焦問題、由表及里。第三,必須領(lǐng)導(dǎo)帶頭、以上率下。第四,必須務(wù)實求實、認真較真。3.一是抬高政治站位,堅持大事大抓。二是堅持思想領(lǐng)先,狠抓學(xué)習教育。三是突出問題導(dǎo)向,深入整改糾治。四是堅持領(lǐng)導(dǎo)帶頭,發(fā)揮表率作用。4.一是立足“早”字抓籌劃。二是著眼“活”字抓學(xué)習。三是圍繞“統(tǒng)”字抓協(xié)調(diào)。5.一是形勢所需。二是任務(wù)所系。三是職責所在。四是制度所定。6.一要提升認識。二要積極作為。三要密切協(xié)作。

  • 主題教育專題讀書班結(jié)班總結(jié)講話

    主題教育專題讀書班結(jié)班總結(jié)講話

    第二,要把調(diào)查研究貫穿始終,實干擔當促進發(fā)展。開展好“察實情、出實招”“破難題、促發(fā)展”“辦實事、解民憂”專項行動,以強化理論學(xué)習指導(dǎo)發(fā)展實踐,以深化調(diào)查研究推動解決發(fā)展難題。領(lǐng)導(dǎo)班子成員要每人牽頭XX個課題開展調(diào)查研究,XX月底前召開調(diào)研成果交流會,集思廣益研究對策措施。各部門、各單位要制定調(diào)研計劃,通過座談訪談、問卷調(diào)查、統(tǒng)計分析等方式開展調(diào)查研究,解決工作實際問題,幫助基層單位和客戶解決實際困難。第三,要把檢視問題貫穿始終,廉潔奉公樹立新風。認真落實公司主題教育整改整治工作方案要求,堅持邊學(xué)習、邊對照、邊檢視、邊整改,對標對表xxx新時代中國特色社會主義思想,深入查擺不足,系統(tǒng)梳理調(diào)查研究發(fā)現(xiàn)的問題、推動發(fā)展遇到的問題、群眾反映強烈的問題,結(jié)合巡視巡察、審計和內(nèi)外部監(jiān)督檢查發(fā)現(xiàn)的問題,形成問題清單。