提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

北師大初中七年級(jí)數(shù)學(xué)上冊(cè)應(yīng)用一元一次方程——打折銷售教案2

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計(jì)算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計(jì)算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計(jì)算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計(jì)算器一定要注意計(jì)算器說(shuō)明書(shū)的保管與使用。方法歸納在解決直角三角形的相關(guān)問(wèn)題時(shí),常常使用計(jì)算器幫助我們處理比較復(fù)雜的計(jì)算。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)30°,45°,60°角的三角函數(shù)值2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)30°,45°,60°角的三角函數(shù)值2教案

    教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過(guò)程中體會(huì)數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計(jì)算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長(zhǎng)有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長(zhǎng)有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)商品利潤(rùn)最大問(wèn)題2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)商品利潤(rùn)最大問(wèn)題2教案

    (8)物價(jià)部門規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤(rùn)?最大利潤(rùn)為多少萬(wàn)元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過(guò)200萬(wàn)元,請(qǐng)你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,不高于78元,那么商場(chǎng)銷售該品牌童裝獲得的最大利潤(rùn)是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷售任務(wù),那么商場(chǎng)銷售該品牌童裝獲得的最大利潤(rùn)是多少元?

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值2教案

    ③設(shè)每件襯衣降價(jià)x元,獲得的利潤(rùn)為y元,則定價(jià)為 元 ,每件利潤(rùn)為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤(rùn),最大利潤(rùn)為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤(rùn)最大?☆ 歸納反思 ☆總結(jié)得出求最值問(wèn)題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過(guò)配方法求出二次函數(shù)的最值。☆ 達(dá)標(biāo)檢測(cè) ☆ 1、用長(zhǎng)為6m的鐵絲做成一個(gè)邊長(zhǎng)為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長(zhǎng)為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場(chǎng)調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問(wèn)每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形2教案

    首先請(qǐng)學(xué)生分析:過(guò)B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來(lái)解.教師可請(qǐng)一名同學(xué)上黑板板書(shū),其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開(kāi)疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過(guò)評(píng)價(jià)黑板上的板演,總結(jié)解坡度問(wèn)題需要注意的問(wèn)題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過(guò)數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡?wèn)題時(shí),最好畫出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    ①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡(jiǎn)便.三、板書(shū)設(shè)計(jì)

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)利用四邊形邊的關(guān)系判定平行四邊形教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)利用四邊形邊的關(guān)系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)認(rèn)識(shí)二元一次方程組說(shuō)課稿2篇

    北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)認(rèn)識(shí)二元一次方程組說(shuō)課稿2篇

    我們遇到的往往就是這樣的方程組,我們要想比較簡(jiǎn)捷地把它解出來(lái),就需要轉(zhuǎn)化為同一個(gè)未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請(qǐng)大家把解答過(guò)程寫出來(lái).解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個(gè)方程組的解法,請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請(qǐng)學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個(gè)方程中同一個(gè)未知數(shù)系數(shù)的絕對(duì)值的最小公倍數(shù),然分別在兩個(gè)方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個(gè)一元一次方程.③解一元一次方程.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們?cè)贏處測(cè)得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長(zhǎng),進(jìn)而求出EF的長(zhǎng),得出答案.解:延長(zhǎng)DE交AB延長(zhǎng)線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)商品利潤(rùn)最大問(wèn)題1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)商品利潤(rùn)最大問(wèn)題1教案

    (2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤(rùn)=每件的利潤(rùn)×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開(kāi)口向下,對(duì)稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤(rùn)的計(jì)算方法,即利潤(rùn)=每件的利潤(rùn)×銷售的件數(shù),是解決問(wèn)題的關(guān)鍵.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形1教案

    方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問(wèn)題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)弧長(zhǎng)及扇形的面積教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)弧長(zhǎng)及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過(guò)中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓周角和圓心角的關(guān)系教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓周角和圓心角的關(guān)系教案

    解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常常考慮此定理.三、板書(shū)設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)平行四邊形的判定定理3與兩平行線間的距離教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)平行四邊形的判定定理3與兩平行線間的距離教案

    (2)∵點(diǎn)G是BC的中點(diǎn),BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理3:對(duì)角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點(diǎn)到另一條直線的距離都相等,這個(gè)距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過(guò)分組討論、操作探究以及合作交流等方式來(lái)進(jìn)行,在探究?jī)蓷l平行線間的距離時(shí),要讓學(xué)生進(jìn)行合作交流.在解決有關(guān)平行四邊形的問(wèn)題時(shí),要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.

  • 北師大版小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)《比的應(yīng)用》說(shuō)課稿

    北師大版小學(xué)數(shù)學(xué)六年級(jí)上冊(cè)《比的應(yīng)用》說(shuō)課稿

    接下來(lái)引導(dǎo)學(xué)生分析題中數(shù)量關(guān)系:題目要分配什么?按照什么分配?重點(diǎn)思考討論:從3:2這個(gè)比中,你能知道什么?接下來(lái)鼓勵(lì)小組合作嘗試多種方法解答,重點(diǎn)理解按比分配的方法。2、小結(jié):按比分配的應(yīng)用題有什么結(jié)構(gòu)特點(diǎn)?怎樣解答這樣的應(yīng)用題?這樣設(shè)計(jì)為學(xué)生提供自主探索的空間。所以在教學(xué)中可以靈活地依據(jù)提出的方法調(diào)換教學(xué)順序,并引導(dǎo)學(xué)生掌握兩種不同的解題方法。安排學(xué)生的小組討論方式能使學(xué)生一開(kāi)始就暢所欲言,把幾種不同思路比較和聯(lián)系起來(lái),在理解的基礎(chǔ)上才能更好的掌握方法,并注意培養(yǎng)學(xué)生的檢驗(yàn)?zāi)芰?。第三個(gè)環(huán)節(jié):多層訓(xùn)練,形成技能。練習(xí)是數(shù)學(xué)課堂教學(xué)一個(gè)重要環(huán)節(jié),我設(shè)計(jì)的練習(xí)題力求做到從易到難,由淺入深,有層次,有坡度,新舊知識(shí)融合恰當(dāng),形成技能技巧,開(kāi)拓思維,發(fā)展能力,達(dá)到練習(xí)的預(yù)期目的。

  • 北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)一次函數(shù)圖象的應(yīng)用說(shuō)課稿

    北師大版初中八年級(jí)數(shù)學(xué)上冊(cè)一次函數(shù)圖象的應(yīng)用說(shuō)課稿

    本環(huán)節(jié)運(yùn)用了一個(gè)階梯式的問(wèn)答方法,幫助突破本節(jié)課的難點(diǎn)。同時(shí),從具體的實(shí)際問(wèn)題入手,由特殊問(wèn)題到一般規(guī)律的揭示,不僅解決了難點(diǎn)問(wèn)題,而且從另外一個(gè)角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動(dòng)探索意識(shí)的培養(yǎng)。4、自主評(píng)價(jià)本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識(shí)以及所積累形成的學(xué)習(xí)經(jīng)驗(yàn)和體驗(yàn)解決問(wèn)題的過(guò)程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡(jiǎn)單到復(fù)雜。先是結(jié)合圖象獲取信息進(jìn)行簡(jiǎn)單的填空和選擇,此題屬于A組題型,檢驗(yàn)學(xué)生的掌握情況;然后進(jìn)行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識(shí)點(diǎn)的靈活運(yùn)用,進(jìn)一步通過(guò)練習(xí)體會(huì)它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問(wèn)題的訓(xùn)練。讓學(xué)生體會(huì)分段函數(shù)的特點(diǎn),并掌握求分段函數(shù)解析式的方法。

上一頁(yè)123...111213141516171819202122下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!