二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼担蠼乜贏BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
在第1環(huán)節(jié)基礎(chǔ)上,再讓同學(xué)認識到函數(shù)Y=2X-1的圖象與方程2X-Y=1的對應(yīng)關(guān)系,從而把兩個方程組成方程組,讓學(xué)生在理解二元一次方程與函數(shù)對應(yīng)的基礎(chǔ)上認識到方程組的解與交點坐標的對應(yīng)關(guān)系,從而引出二元一次方程組的圖象解法。3、例題訓(xùn)練,知識系統(tǒng)化通過書上的例1,用作圖象的方法解方程組,讓學(xué)生明白解題步驟與格式,從而規(guī)范理順所學(xué)的圖象法解方程組,例題由師生合作完成,由學(xué)生說老師寫的方式。4、操作演練、形成技能讓學(xué)生獨立完成書P208隨堂練習,給定時間,等多數(shù)學(xué)生完成后,實物投影其完成情況,并作出分析與評價。5、變式訓(xùn)練,延伸擴展通過讓學(xué)生做收上P208的試一試,而后給一定時間相互交流,并請代表發(fā)言他的所悟,然而老師歸納總結(jié),并讓學(xué)生通過自已嘗試與老師的點拔從“數(shù)”與“形”兩個方面初步體會某些方程組的無解性,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力。6、檢測評價,課題作業(yè)
(一)調(diào)整產(chǎn)業(yè)結(jié)構(gòu),大力發(fā)展經(jīng)濟,創(chuàng)造良好的就業(yè)環(huán)境隨著社會轉(zhuǎn)型產(chǎn)業(yè)升級和國家就業(yè)政策的引導(dǎo)支持,婦女就業(yè)問題得到緩解,但勞動力剩余導(dǎo)致的失業(yè)現(xiàn)象仍然存在。雖然縣相關(guān)職能部門在這方面做了大量的工作,但這只解決了燃眉之急,沒有根本解決問題。20xx年城鎮(zhèn)登記失業(yè)人數(shù)達x萬人,其中女性失業(yè)人數(shù)x萬人,在失業(yè)總?cè)藬?shù)中女性占到x%。對此,我們要多開發(fā)一些適合女性就業(yè)的工作崗位,多為女性創(chuàng)造一些就業(yè)機會,為促進婦女的就業(yè)創(chuàng)造良好的政策環(huán)境。不斷幫助婦女轉(zhuǎn)變就業(yè)觀念,鼓勵她們參加免費職業(yè)培訓(xùn)、創(chuàng)業(yè)培訓(xùn),使其有一技之長;積極落實如小額貸款、稅收等優(yōu)惠政策,促進婦女就業(yè)。(二)應(yīng)健全完善未成年人保護工作的組織協(xié)調(diào)機制留守兒童缺少關(guān)愛成為重要的社會問題。隨著城鎮(zhèn)化進程的不斷推進,留守兒童問題已經(jīng)成為一個社會問題,而且成上升趨勢。父母雙方在外的留守兒童有x%以上隨祖輩生活,由于父母不在身邊,親情缺失,監(jiān)護不力,留守兒童幾乎生活在無限制狀態(tài)下。主要存在以下問題:一是身體素質(zhì)不佳。