解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
(2)∵點(diǎn)G是BC的中點(diǎn),BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計(jì)1.平行四邊形的判定定理3:對(duì)角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點(diǎn)到另一條直線的距離都相等,這個(gè)距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過分組討論、操作探究以及合作交流等方式來(lái)進(jìn)行,在探究?jī)蓷l平行線間的距離時(shí),要讓學(xué)生進(jìn)行合作交流.在解決有關(guān)平行四邊形的問題時(shí),要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買.決定打折出售,但仍無(wú)人購(gòu)買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買.決定打折出售,但仍無(wú)人購(gòu)買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過程,體驗(yàn)用類比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識(shí)的興趣,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會(huì)運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來(lái)判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對(duì)應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來(lái)達(dá)到加深理解判定方法2的條件的目的的.
∴此方程無(wú)解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對(duì)于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來(lái)解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流。活動(dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
教學(xué)內(nèi)容4.4.1 對(duì)數(shù)函數(shù)及其圖像與性質(zhì)教學(xué)時(shí)間 (不超過3課時(shí))2課時(shí)授課類型新授課班級(jí) 日期 教學(xué)目標(biāo)知識(shí)目標(biāo):掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),并會(huì)簡(jiǎn)單的應(yīng)用.能力目標(biāo):觀察對(duì)數(shù)函數(shù)的圖像,總結(jié)對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)觀察能力.情感目標(biāo):)體味對(duì)數(shù)函數(shù)的認(rèn)知過程,樹立嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣.教學(xué)重點(diǎn)對(duì)數(shù)函數(shù)的圖像及性質(zhì).教學(xué)難點(diǎn)對(duì)數(shù)函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程,培養(yǎng)數(shù)形結(jié)合的思想.教法學(xué)法這節(jié)課主要采用啟發(fā)式和引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法。⑴ 實(shí)例引入知識(shí),提升學(xué)生的求知欲;⑵ “描點(diǎn)法”作圖與軟件的應(yīng)用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì); ⑶知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力;通過教師在教學(xué)過程中的點(diǎn)撥,啟發(fā)學(xué)生通過主動(dòng)觀察、主動(dòng)思考、動(dòng)手操作、自主探究來(lái)達(dá)到對(duì)知識(shí)的發(fā)現(xiàn)和接受.課前準(zhǔn)備1.備教材、備學(xué)生 2.PPT課件 3.五環(huán)四步教學(xué)模式教案教 學(xué) 過 程環(huán)節(jié)教師活動(dòng)師生活動(dòng)預(yù)期效果一環(huán) 學(xué)情 動(dòng)員某種物質(zhì)的細(xì)胞分裂,由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……,那么,知道分裂得到的細(xì)胞個(gè)數(shù)如何求得分裂次數(shù)呢? 設(shè)1個(gè)細(xì)胞經(jīng)過y次分裂后得到x個(gè)細(xì)胞,則x與y的函數(shù)關(guān)系是,寫成對(duì)數(shù)式為,此時(shí)自變量x位于真數(shù)位置.師:根據(jù)式,給定一個(gè)x值(經(jīng)過的次數(shù)),就能計(jì)算出唯一的函數(shù)值y.實(shí)際上,在這個(gè)問題中知道的是y的值,要求的是對(duì)應(yīng)的x值.所以用對(duì)數(shù)形式表示, 通常我們用x表示自變量,用y表示因變量, 易于學(xué)生想象領(lǐng)會(huì)函數(shù)意義二環(huán)問題 診斷一般地,形如的函數(shù)叫以為底的對(duì)數(shù)函數(shù),其中a>0且a≠1.對(duì)數(shù)函數(shù)的定義域?yàn)?,值域?yàn)镽. 例如、、都是對(duì)數(shù)函數(shù). 教師引導(dǎo)學(xué)生聯(lián)系上面“情景問題”的表達(dá)式,請(qǐng)同學(xué)們思考討論對(duì)數(shù)函數(shù)的概念. 師:(1) 為什么規(guī)定 a>0且 a≠1? (2) 為什么對(duì)數(shù)函數(shù)的定義域是(0,+∞)? 指導(dǎo)體會(huì)對(duì)數(shù)函數(shù)的特點(diǎn)。讓學(xué)生牢記底數(shù)大于零且不等于1,真數(shù)大于零.
課題名稱4.1實(shí)數(shù)指數(shù)冪授課班級(jí) 授課時(shí)間13機(jī)電1課題序號(hào) 授課課時(shí)第 到 授課形式啟發(fā)、類比使用教具課件教學(xué)目的1.識(shí)記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分?jǐn)?shù)指數(shù)冪的定義,會(huì)進(jìn)行根式與分?jǐn)?shù)指數(shù)冪的互化。 3.識(shí)記有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),會(huì)進(jìn)行簡(jiǎn)單的有理數(shù)指數(shù)冪的運(yùn)算。教學(xué)重點(diǎn)有理數(shù)指數(shù)冪的運(yùn)算、實(shí)數(shù)指數(shù)冪的綜合運(yùn)算教學(xué)難點(diǎn)有理數(shù)指數(shù)冪的運(yùn)算、實(shí)數(shù)指數(shù)冪的綜合運(yùn)算更新、補(bǔ) 充、刪減 內(nèi)容無(wú)課外作業(yè) 1.P 96 習(xí)題。 授課主要內(nèi)容或板書設(shè)計(jì)實(shí)數(shù)指數(shù)冪 概念 思考交流 例題 課堂小結(jié) 問題解決 練習(xí) 教學(xué)后記
【教學(xué)目標(biāo)】知識(shí)目標(biāo):⑴ 理解指數(shù)函數(shù)的圖像及性質(zhì);⑵ 了解指數(shù)模型,了解指數(shù)函數(shù)的應(yīng)用.能力目標(biāo):⑴ 會(huì)畫出指數(shù)函數(shù)的簡(jiǎn)圖;⑵ 會(huì)判斷指數(shù)函數(shù)的單調(diào)性;⑶了解指數(shù)函數(shù)在生活生產(chǎn)中的部分應(yīng)用,從而培養(yǎng)學(xué)生分析與解決問題能力.【教學(xué)重點(diǎn)】⑴ 指數(shù)函數(shù)的概念、圖像和性質(zhì);⑵ 指數(shù)函數(shù)的應(yīng)用實(shí)例.【教學(xué)難點(diǎn)】指數(shù)函數(shù)的應(yīng)用實(shí)例.【教學(xué)設(shè)計(jì)】⑴ 以實(shí)例引入知識(shí),提升學(xué)生的求知欲;⑵ “描點(diǎn)法”作圖與軟件的應(yīng)用相結(jié)合,有助于觀察得到指數(shù)函數(shù)的性質(zhì);⑶知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力;⑷實(shí)際問題的解決,培養(yǎng)學(xué)生分析與解決問題的能力;⑸以小組的形式進(jìn)行討論、探究、交流,培養(yǎng)團(tuán)隊(duì)精神.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】2課時(shí).(90分鐘)【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 4.2指數(shù)函數(shù). *創(chuàng)設(shè)情景 興趣導(dǎo)入 問題 某種物質(zhì)的細(xì)胞分裂,由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),4個(gè)分裂成8個(gè),……,知道分裂的次數(shù),如何求得細(xì)胞的個(gè)數(shù)呢? 解決 設(shè)細(xì)胞分裂次得到的細(xì)胞個(gè)數(shù)為,則列表如下: 分裂次數(shù)x123…x…細(xì)胞個(gè)數(shù)y2=4=8=…… 由此得到, . 歸納 函數(shù)中,指數(shù)x為自變量,底2為常數(shù). 介紹 播放 課件 質(zhì)疑 引導(dǎo) 分析 了解 觀看 課件 思考 領(lǐng)悟 導(dǎo)入 實(shí)例 比較 易于 學(xué)生 想象 歸納 領(lǐng)會(huì) 函數(shù) 的變 化意 義 5
·班會(huì)主旨·安全教育是學(xué)校一項(xiàng)重點(diǎn)工作,如何做好這項(xiàng)工作是關(guān)鍵。通過開展以“珍愛生命,安全第一”為主題的安全知識(shí)教育班會(huì),增強(qiáng)學(xué)生的安全意識(shí),能懂會(huì)用一些基本的安全知識(shí),有意識(shí)地防范危險(xiǎn),提高學(xué)生基本自我保護(hù)的能力。·班會(huì)地點(diǎn)·教室·活動(dòng)重點(diǎn)·學(xué)習(xí)防火、防觸電、防食物中毒等生活常識(shí),培養(yǎng)有關(guān)防范力。·班會(huì)流程·(一)防火知識(shí)講解1.課件出示物品,讓學(xué)生找出不能玩、易引起火災(zāi)的物品。(學(xué)生自由回答)教師繼續(xù)提問:“火災(zāi)會(huì)給我們生活帶來(lái)什么危害?”(指名學(xué)生回答)2.引導(dǎo)學(xué)生觀看相關(guān)火災(zāi)視頻,了解火災(zāi)的危害。(1)教師提問:“你看到些什么?(學(xué)生自由回答)(2)教師小結(jié):火不僅能燒毀房子,燒傷人,還會(huì)燒毀森林,污染空氣。3.引導(dǎo)幼兒了解預(yù)防火災(zāi)的方法,認(rèn)識(shí):(1)告訴學(xué)生不能靠近容易著火的物品(2)告誡學(xué)生不能隨便燃放煙花爆竹(3)告誡學(xué)生不能玩未熄滅的煙頭,見了未熄滅的煙頭應(yīng)及時(shí)踩滅。(4)引導(dǎo)學(xué)生認(rèn)讀“嚴(yán)禁煙火”的標(biāo)志“防火”標(biāo)志4.引導(dǎo)學(xué)生了解幾種自救方法: (1)如果所在房間有電話,趕快打119報(bào)警,并說明著火的詳細(xì)地址,什么街,哪 號(hào)樓或附近有什么明顯標(biāo)志及單位。(2)室外著火門已發(fā)燙里千萬(wàn)不要開門,并用毛巾、衣服或床單塞住門縫,以防濃煙跑進(jìn)來(lái),如門不很熱也沒看到火苗,趕快離開。(3)受到火勢(shì)威脅時(shí),要當(dāng)機(jī)立斷披上浸濕的衣物、被褥等向安全出口方向沖出去。穿過濃煙逃生里,要盡量使身體貼近地面,并用濕毛巾捂住口鼻。(4)身上著火,千萬(wàn)不要奔跑,可就地打滾用厚重衣物壓滅火苗。(5)遇到火災(zāi)不可乘坐電梯,要向安全出口方向逃生。(6)若所有逃生線路被大火封鎖,要立即退回室內(nèi),用打手電筒、揮舞衣物等方式向窗外發(fā)送求救信號(hào),等待救援,不可盲目跳樓。
2、提高左右手動(dòng)作的靈活性、協(xié)調(diào)性。 【活動(dòng)準(zhǔn)備】 畫有水果輪廓的涂畫紙若干、蘋果剪紙若干、玉米粒,自制各種喂小動(dòng)物玩具、積木、自制小手鐲每人一副(黃、藍(lán)兩色) 【活動(dòng)過程】一、教師邊念《小小手》兒歌邊做動(dòng)作,導(dǎo)入活動(dòng)。 小朋友,現(xiàn)在我給大家念個(gè)兒歌聽好嗎?“拍拍手、拉拉手,我們都有一雙手,穿衣服、扣紐扣,洗臉、刷牙和梳頭,畫畫也要用小手,小小手、小小手,真是我的好朋友?!鼻?!我的小手真能干,你們的小手會(huì)做些什么事情呢?幼兒互相討論交流并講述小手能做什么事情。
二、互動(dòng)交流,理解算法1.出示教科書第22頁(yè)的情境圖,提問:他們?cè)诟墒裁矗磕惬@得了什么信息?能提出什么問題?怎樣列式?2.師:今天我們就學(xué)習(xí)一位數(shù)除三位數(shù)的計(jì)算方法。(板書課題:一位數(shù)除三位數(shù))3.師:怎樣計(jì)算238÷6呢?你能用估算的方法估計(jì)出大致結(jié)果嗎?4.學(xué)生嘗試獨(dú)立完成例3的豎式計(jì)算。師:在這道題中被除數(shù)最高位上是2個(gè)百,2個(gè)百除以6,商不夠1個(gè)百怎么辦?師:誰(shuí)能說一說商3個(gè)十的3寫在商的什么位置上?為什么?教師邊板演邊說明:用除數(shù)6去乘3個(gè)十,積是18個(gè)十,表示被除數(shù)中已經(jīng)分掉的數(shù),寫在23的下面。23減18得5,表示十位上還剩5個(gè)十。師:接下來(lái)該怎么辦?(把被除數(shù)個(gè)位上的8落下來(lái),與十位上的5合起來(lái)繼續(xù)除。)師:最后結(jié)果是多少?5.啟發(fā)學(xué)生想一想:如果一本相冊(cè)有24頁(yè),一本相冊(cè)能插得下這些照片嗎?2本呢?
2.四則運(yùn)算的意義。(1)知識(shí)梳理師:我們學(xué)過哪些運(yùn)算?舉例說明這些運(yùn)算的含義。生:把兩個(gè)(或幾個(gè))數(shù)合并成一個(gè)數(shù)的運(yùn)算,叫做加法。 已知兩個(gè)加數(shù)的和與其中的一個(gè)加數(shù),求另一個(gè)加數(shù)的運(yùn)算,叫做減法。 求幾個(gè)相同加數(shù)的和的簡(jiǎn)便運(yùn)算。 已知兩個(gè)因數(shù)的積與其中一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。 師:整數(shù)、小數(shù)、分?jǐn)?shù)四則運(yùn)算有什么相同點(diǎn)?學(xué)生交流后師總結(jié):加減法:都是把相同計(jì)數(shù)單位的數(shù)相加減。乘除法:小數(shù)乘除法把除數(shù)轉(zhuǎn)化成整數(shù)再計(jì)算。分?jǐn)?shù)除法要轉(zhuǎn)化成分?jǐn)?shù)乘法計(jì)算。師:整數(shù)、小數(shù)、分?jǐn)?shù)四則運(yùn)算有什么不同點(diǎn)?生:小數(shù)乘、除法還要在計(jì)算結(jié)果上確定小數(shù)點(diǎn)的位置,分?jǐn)?shù)除法轉(zhuǎn)化后乘的是除數(shù)的倒數(shù)。師:如果有0或者1參與四則運(yùn)算,有哪些特殊情況?(學(xué)生討論交流)生:任何數(shù)加減0都得原數(shù)。
6. 本題是一道實(shí)際應(yīng)用的題,可以結(jié)合生活實(shí)際舉例,在舉例中進(jìn)一步認(rèn)識(shí)分?jǐn)?shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個(gè)身高的 ; (讀作五分之三)表示把整個(gè)長(zhǎng)江的干流看作單位“1”,受污染的部分占整個(gè)長(zhǎng)江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分?jǐn)?shù)單位分別是: 、 、 、 、 。9. 本題有兩個(gè)知識(shí)點(diǎn):一是根據(jù)分?jǐn)?shù)的意義涂色,是把12個(gè)蘋果平均分成了2份,1份有6個(gè)蘋果; 是把12個(gè)蘋果平均分成了3份,1份有4個(gè)蘋果; 是把12個(gè)蘋果平均分成了4份,1份有3個(gè)蘋果; 是把12個(gè)蘋果平均分成了6份,1份有2個(gè)蘋果; 是把12個(gè)蘋果平均分成了12份,1份有1個(gè)蘋果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說隨著分母的增大,幾分之一所表示的蘋果個(gè)數(shù),從 的6個(gè)到 的1個(gè),相應(yīng)地在減少。
教學(xué)難點(diǎn):能用多種方法進(jìn)行計(jì)算。教學(xué)準(zhǔn)備:計(jì)數(shù)器、小棒、投影片等。教學(xué)過程:一、創(chuàng)設(shè)情景(投影出示)在一個(gè)美麗的大森林里,一天早上,二只松鼠提著一個(gè)籃子上山采松果,松鼠媽媽采了14個(gè),松鼠寶寶采了3個(gè),然后就一起高高興興地回家去了。(學(xué)生看圖,然后讓學(xué)生根據(jù)圖意編一個(gè)小故事,比一比,看誰(shuí)編的故事最有趣)1、指名編故事。2、有誰(shuí)能提出有關(guān)的數(shù)學(xué)問題。(先同桌互相說,然后再指名說)教師根據(jù)學(xué)生的回答進(jìn)行選擇性的板書:(1)一共有多少個(gè)松果?(2)松鼠媽媽比松鼠寶寶多采多少個(gè)?(3)松鼠寶寶比松鼠媽媽少采多少個(gè)松果?(4)松鼠寶寶還要采多少個(gè)才能和松鼠媽媽采的同樣多?3、先解決第一個(gè)問題:?jiǎn)枺?1)要求一共有多少個(gè)松果?用什么方法計(jì)算?如何列式?為什么用加法計(jì)算?說一說你的理由?還有誰(shuí)能說?(2)14+3=?你是怎樣算的?同桌互說算法,然后指名說。