提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

在全鎮(zhèn)教學能手大賽總結會上的講話

  • 初中數(shù)學人教版二元一次方程組教學設計教案

    初中數(shù)學人教版二元一次方程組教學設計教案

    (一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領學生一起列出方程組)解:設勝X場,負Y場。根據(jù):勝的場數(shù)+負的場數(shù)=總場數(shù) 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16

  • 小學美術人教版一年級下冊《第3課花地毯》教學設計

    小學美術人教版一年級下冊《第3課花地毯》教學設計

    2學情分析一年級的學生,雖然經(jīng)過了一學期學習但好習慣還沒養(yǎng)成,課上易失去注意力等。因此我在教學中要關注學生的注意力,抓住學生的興趣點加以引導、啟發(fā),說易懂的語言,練學生易學的方法,讓學生在寬松融洽的氣氛快樂的學習。a教學重點教學重點:以最簡單的方式讓學生了解圖案的基本構成特點。學時難點把握個人創(chuàng)作與集體合作的關系。

  • 小學美術人教版六年級下冊《第10課宇宙之旅》教學設計

    小學美術人教版六年級下冊《第10課宇宙之旅》教學設計

    2重點難點教學重點:1.了解中國航天知識和掌握飛船的主要結構。2.利用各種廢棄物制作各種宇宙飛船。教學難點:學習利用各種廢棄物制作宇宙飛船,培養(yǎng)學生養(yǎng)成收集有關宇宙飛船的信息與資料的習慣教學活動活動1【導入】導入新課.師:今年11月1日5時58分10秒神舟八號的發(fā)射成功,再一次圓了中國人民的千年飛天夢。真讓人振奮啊!好,現(xiàn)在讓我們一起回到那激動人心的時刻吧。教師播放在段有關“神州八號”載人飛船上天的影片,在播放過程中講解有關“神州八號”的發(fā)射情況。

  • 小學美術人教版二年級下冊《第2課重重疊疊》教學設計說課稿

    小學美術人教版二年級下冊《第2課重重疊疊》教學設計說課稿

    1.展示海洋魚類圖片,并導入課題。師:夏季炎熱的天氣已經(jīng)開始了,老師帶來了一份涼爽禮物想送大家,你們猜猜是什么呢?生:……師:想知道嗎?這份禮物就是幾張美麗的圖片,請看大屏幕:在深藍色的海底世界里,一群可愛的海洋魚在悠閑地游來游去,好涼快,好舒服呀。喜歡這個禮物嗎? 生:…… 師:喜歡呀,老師太高興了。同學們再來看一看,在這幾張漂亮的圖片里,除了讓我們感受到大海的涼爽和美麗之外,你還發(fā)現(xiàn)什么了嗎?

  • 小學美術人教版六年級下冊《第9課圖文并茂3》教學設計說課稿

    小學美術人教版六年級下冊《第9課圖文并茂3》教學設計說課稿

    2重點難點教學重點第一課時:了解繪畫故事的表現(xiàn)特點,感受真、善、美。第二課時:繪畫自編故事的創(chuàng)作特點及步驟。教學難點第一課時:選材、構思設計。第二課時:構圖與繪制3教學過程3.1 第一課時教學活動活動1【導入】“連連看” 教師提供數(shù)張圖片和幾句話(或幾段文字),請學生根據(jù)文字找到相應的圖畫將它們連起來,并找出先后順序將故事講完整。教師小結,出示課題《圖文并茂》。設計意圖:以游戲的形式“連一連”,激發(fā)學生的好奇心和興趣,以飽滿的熱情投入學習內(nèi)容——圖文并茂。

  • 小學美術人教版六年級下冊《第9課圖文并茂2》教學設計說課稿

    小學美術人教版六年級下冊《第9課圖文并茂2》教學設計說課稿

    2學情分析這是一個學生比較感興趣的內(nèi)容,通過學習不僅能提高學生的學習欲望,更希望能根據(jù)一句話或者一段話以畫畫的形式表現(xiàn)出來。3重點難點重點:了解繪畫故事的表現(xiàn)特點,感受真、善、美。繪畫自編故事的創(chuàng)作特點及步驟。難點:選材、構思設計、構圖與繪制。

  • 小學美術人教版六年級下冊《第13課畢業(yè)啦》教學設計說課稿

    小學美術人教版六年級下冊《第13課畢業(yè)啦》教學設計說課稿

    活動1【導入】談話引入設計意圖:這一環(huán)節(jié),是一首小詩來激發(fā)學生的離別情感,勾起學生對小學六年生活的美好回憶,從而導入新課。同學們,今天老師給大家?guī)淼牟皇敲利惖膱D畫,而是一首我寫的詩,你們誰愿意來第一個來欣賞一下。出示課件1:學生配樂朗讀:每到六年級心里就有些難過你們就要離開而我剛剛收獲我不知道你們將來會怎樣生活你們總說你們永遠永遠記得我

  • 小學美術人教版三年級下冊《第1課水墨游戲》教學設計說課稿

    小學美術人教版三年級下冊《第1課水墨游戲》教學設計說課稿

    3重點難點教學重點:認識、掌握中國畫工具材料的使用。用筆、用墨、用水的訓練。教學難點:焦、濃、重、淡、清的正確畫法,嘗試用此技法畫一個水墨小品。教學活動活動1【導入】一、師生問候,引入新課。1、檢查學生用具準備情況,提醒大家管理好自己的水和墨汁,別污染自己或他人衣服。2、提問引入:你自己最喜歡用什么畫筆作畫?引入水墨畫概念。

  • 教學反思數(shù)學仿編應用題活動《小鬼當家》課件教案

    教學反思數(shù)學仿編應用題活動《小鬼當家》課件教案

    目的:1、讓幼兒學會仿編和解答4的加減應用題。2、在生活情景中能根據(jù)水果卡片自編4的加減應用題。準備:1、知識經(jīng)驗準備:請家長帶 幼兒去買東西,使幼兒了解一個買與賣的過程。2、物質準備:準備各種水果卡片,人手4個替代物作錢。過程:一、以“幫農(nóng)民伯伯摘果子”引入?!靶∨笥?,果園里的水果都成熟了,農(nóng)民伯伯想請你們幫他摘水果,你們愿意嗎?”(愿意)二、游戲“摘水果”。師交代游戲玩法和規(guī)則。三、分類活動:分水果。1、引導幼兒將自己所摘的水果跟同伴之間進行交流。2、交代任務:將各種水果分別放在筐里。

  • 高教版中職數(shù)學基礎模塊下冊:6.3《等比數(shù)列》教學設計

    高教版中職數(shù)學基礎模塊下冊:6.3《等比數(shù)列》教學設計

    課題序號6-3授課形式講授與練習課題名稱等比數(shù)列課時2教學 目標知識 目標理解并掌握等比數(shù)列的概念,掌握并能應用等比數(shù)列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質 目標通過對等比數(shù)列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結的科學思維習慣和嚴謹?shù)膶W習態(tài)度。教學 重點等比數(shù)列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數(shù)列的通項公式與求和公式變式運用。教學內(nèi)容 調(diào)整無學生知識與 能力準備數(shù)列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核

  • 高教版中職數(shù)學基礎模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設計

    高教版中職數(shù)學基礎模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設計

    課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結構特征,并能運用這些特征描述生活中簡單物體的結構。 2、讓學生了解柱、錐、球的側面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。

  • 高教版中職數(shù)學基礎模塊下冊:6.2《等差數(shù)列》教學設計

    高教版中職數(shù)學基礎模塊下冊:6.2《等差數(shù)列》教學設計

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內(nèi)容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.

  • 【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設計

    【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經(jīng)常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40

  • 【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上海→重慶. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設計

    【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設計

    一、定義:  ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學基礎模塊下冊:10.1《計數(shù)原理》教學設計

    高教版中職數(shù)學基礎模塊下冊:10.1《計數(shù)原理》教學設計

    授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別

  • 高教版中職數(shù)學基礎模塊下冊:10.2《概率》教學設計

    高教版中職數(shù)學基礎模塊下冊:10.2《概率》教學設計

    課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件

  • 空間向量基本定理教學設計人教A版高中數(shù)學選擇性必修第一冊

    空間向量基本定理教學設計人教A版高中數(shù)學選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構成空間的一個正交基底.

上一頁123...828384858687888990919293下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!