如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學的三角函數(shù)的關(guān)系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學的三角函數(shù)的關(guān)系進行解答.
(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學生自己完成)三、課堂練習 活動3 教材習題小結(jié):談談你這節(jié)課學習的收獲.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎(chǔ)上加以引導點撥.判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達到消元的目的.請大家把解答過程寫出來.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個方程組的解法,請同學們思考下面兩個問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學生分組討論、總結(jié)并請學生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個方程中同一個未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然分別在兩個方程的兩邊乘以適當?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個一元一次方程.③解一元一次方程.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時,常常使用計算器幫助我們處理比較復雜的計算。
教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導讀:仔細閱讀課本內(nèi)容后完成下面填空:
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學生進行合作交流.在解決有關(guān)平行四邊形的問題時,要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學生的邏輯思維能力.
接下來引導學生分析題中數(shù)量關(guān)系:題目要分配什么?按照什么分配?重點思考討論:從3:2這個比中,你能知道什么?接下來鼓勵小組合作嘗試多種方法解答,重點理解按比分配的方法。2、小結(jié):按比分配的應用題有什么結(jié)構(gòu)特點?怎樣解答這樣的應用題?這樣設(shè)計為學生提供自主探索的空間。所以在教學中可以靈活地依據(jù)提出的方法調(diào)換教學順序,并引導學生掌握兩種不同的解題方法。安排學生的小組討論方式能使學生一開始就暢所欲言,把幾種不同思路比較和聯(lián)系起來,在理解的基礎(chǔ)上才能更好的掌握方法,并注意培養(yǎng)學生的檢驗能力。第三個環(huán)節(jié):多層訓練,形成技能。練習是數(shù)學課堂教學一個重要環(huán)節(jié),我設(shè)計的練習題力求做到從易到難,由淺入深,有層次,有坡度,新舊知識融合恰當,形成技能技巧,開拓思維,發(fā)展能力,達到練習的預期目的。
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學生的數(shù)形結(jié)合思想,還有利于學生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應用本節(jié)課所學的知識以及所積累形成的學習經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓練。在練習題的選擇上,由簡單到復雜。先是結(jié)合圖象獲取信息進行簡單的填空和選擇,此題屬于A組題型,檢驗學生的掌握情況;然后進行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點的靈活運用,進一步通過練習體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學習的分段函數(shù)練習,發(fā)散學生思維問題的訓練。讓學生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。