提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

【高教版】中職數學基礎模塊上冊:2.3《一元二次不等式》優(yōu)秀教案

  • 北師大初中九年級數學下冊三角函數的應用2教案

    北師大初中九年級數學下冊三角函數的應用2教案

    教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的應用.2.能夠把實際問題轉化為數學問題,能夠借助于計算器進行有關三角函數的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數學活動,提高學習數學、學好數學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的作用.2.發(fā)展學生數學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數學下冊三角函數的應用1教案

    北師大初中九年級數學下冊三角函數的應用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數據:2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數解直角三角形.

  • 北師大初中七年級數學下冊三角形的三邊關系教案

    北師大初中七年級數學下冊三角形的三邊關系教案

    方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力

  • 北師大初中九年級數學下冊圖形面積的最大值2教案

    北師大初中九年級數學下冊圖形面積的最大值2教案

    ③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數的解析式,并根據自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?

  • 北師大初中七年級數學下冊用表格表示的變量間關系教案

    北師大初中七年級數學下冊用表格表示的變量間關系教案

    解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現(xiàn)產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設計1.常量與變量:在一個變化過程中,數值發(fā)生變化的量為變量,數值始終不變的量稱之為常量.2.用表格表示數量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來

  • 北師大初中七年級數學下冊用尺規(guī)作三角形教案

    北師大初中七年級數學下冊用尺規(guī)作三角形教案

    【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結:已知三角形三邊的長,根據全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學習了有關三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學生的動手能力、語言表達能力

  • 北師大初中八年級數學下冊多邊形的內角和與外角和教案

    北師大初中八年級數學下冊多邊形的內角和與外角和教案

    方法總結:解題的關鍵是由題意列出不等式求出這個少算的內角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數,求多邊形的邊數正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結:如果已知正多邊形的一個外角,求邊數可直接利用外角和除以這個角即可.【類型二】 多邊形內角和與外角和的綜合運用一個多邊形的內角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設這個多邊形的邊數為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結:熟練掌握多邊形的內角和定理及外角和定理,解題的關鍵是由已知等量關系列出方程從而解決問題.

  • 北師大初中八年級數學下冊旋轉的定義和性質教案

    北師大初中八年級數學下冊旋轉的定義和性質教案

    (3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉的性質的運用如圖,點E是正方形ABCD內一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉性質知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉的概念將一個圖形繞一個頂點按照某個方向轉動一個角度,這樣的圖形運動稱為旋轉.2.旋轉的性質一個圖形和它經過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等于旋轉角,對應線段相等,對應角相等.

  • 北師大初中九年級數學下冊商品利潤最大問題2教案

    北師大初中九年級數學下冊商品利潤最大問題2教案

    (8)物價部門規(guī)定,此新型通訊產品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,銷售量y(件)與銷售單價x(元)之間的函數關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?

  • 北師大初中九年級數學下冊解直角三角形2教案

    北師大初中九年級數學下冊解直角三角形2教案

    首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

  • 北師大初中九年級數學下冊圓周角和圓心角的關系教案

    北師大初中九年級數學下冊圓周角和圓心角的關系教案

    解析:點E是BC︵的中點,根據圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

  • 北師大初中七年級數學下冊角平分線的性質教案

    北師大初中七年級數學下冊角平分線的性質教案

    解析:根據AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結:通過本題要掌握角平分線的作圖步驟,根據作圖明確AM是∠BAC的角平分線是解題的關鍵.三、板書設計1.角平分線的性質:角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生在性質的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練

  • 北師大初中七年級數學下冊三角形的內角和教案

    北師大初中七年級數學下冊三角形的內角和教案

    解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結:本題主要利用了“直角三角形兩銳角互余”的性質和三角形的內角和定理,熟記性質并準確識圖是解題的關鍵.三、板書設計1.三角形的內角和定理:三角形的內角和等于180°.2.三角形內角和定理的證明3.直角三角形的性質:直角三角形兩銳角互余.本節(jié)課通過一段對話設置疑問,巧設懸念,激發(fā)起學生獲取知識的求知欲,充分調動學生學習的積極性,使學生由被動接受知識轉為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內角和是180°這一結論

  • 北師大初中七年級數學下冊線段垂直平分線的性質教案

    北師大初中七年級數學下冊線段垂直平分線的性質教案

    解析:(1)根據AD∥BC可知∠ADC=∠ECF,再根據E是CD的中點可求出△ADE≌△FCE,根據全等三角形的性質即可解答;(2)根據線段垂直平分線的性質判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結:此題主要考查線段的垂直平分線的性質等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

  • 北師大初中八年級數學下冊線段的垂直平分線教案

    北師大初中八年級數學下冊線段的垂直平分線教案

    ∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結:當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質進行線段相等關系的轉化.三、板書設計1.線段的垂直平分線的性質定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對線段垂直平分線性質定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.

  • 北師大初中九年級數學下冊弧長及扇形的面積教案

    北師大初中九年級數學下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們容易看出這段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中九年級數學下冊切線的判定及三角形的內切圓教案

    北師大初中九年級數學下冊切線的判定及三角形的內切圓教案

    解析:(1)連接BI,根據I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.

  • 北師大初中九年級數學下冊解直角三角形1教案

    北師大初中九年級數學下冊解直角三角形1教案

    方法總結:解答此類題目的關鍵是根據題意構造直角三角形,然后利用所學的三角函數的關系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據勾股定理求出BD、AD的長,再根據解直角三角形求出CD的長,最后根據三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結:解答此類題目的關鍵是根據題意構造直角三角形,然后利用所學的三角函數的關系進行解答.

  • 北師大初中九年級數學下冊商品利潤最大問題1教案

    北師大初中九年級數學下冊商品利潤最大問題1教案

    (2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數,即可求得函數的解析式;(2)利用(1)得到的兩個解析式,結合二次函數與一次函數的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數,是解決問題的關鍵.

  • 北師大初中九年級數學下冊圖形面積的最大值1教案

    北師大初中九年級數學下冊圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數y=ax2+bx+c的最值已知二次函數y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數求圖形面積的最大值【類型一】 利用二次函數求矩形面積的最大值

上一頁123...484950515253545556575859下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!