2 根據(jù)下面4幅,你能判斷出哪個學(xué)校的女生人數(shù)最多嗎?(1) 如果甲校的學(xué)生總?cè)藬?shù)900人,那么甲校的女生有多少人?(2) 如果丙校男生與甲校的同樣多,那么丙校學(xué)生總?cè)藬?shù)有多少人?(3) 如果乙校的學(xué)生總?cè)藬?shù)與丙校的同樣多,那么乙校男生有多少人?(4) 如果丁校的男生與乙校的同樣多,那么乙校的女生有多少人?3 出示課件《中國人口占世界的百分比》和《中國國土面積占世界的百分比》統(tǒng)計圖和有關(guān)的數(shù)據(jù)。(1)中國人口約13億 (2)中國國土面積約960萬平方千米(請同學(xué)認(rèn)真觀察統(tǒng)計圖和有關(guān)的數(shù)據(jù),請你說說獲得了哪些信息?并提出我們能夠解決的問題。要求:先在小組交流,然后派代表提出問題,并指定他組回答,其他同學(xué)當(dāng)評委;如果回答正確,由的同學(xué)提問題,否則,由提問題的同學(xué)繼續(xù)提問。同組成員可幫助。)還有什么想法?3 出示西山村果園各種果樹種植面積情況,要求學(xué)生根據(jù)給出的數(shù)據(jù)制成扇形統(tǒng)計圖。
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時,要做到不重不漏,分類標(biāo)準(zhǔn)不同時,分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學(xué)知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識來解釋,關(guān)鍵是要找到生活實例與數(shù)學(xué)知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵學(xué)生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個多面體,看看是否還是那個結(jié)果。
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對應(yīng)線段的長度.三、板書設(shè)計投影的概念與中心投影投影的概念:物體在光線的照射下,會 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關(guān)系的活動中,體會立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問題、分析問題的能力.
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當(dāng)小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習(xí)題5.1八、板書設(shè)計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達能力.
【課題】1.1 集合的概念【教學(xué)目標(biāo)】1、理解集合、元素的概念及其關(guān)系,掌握常用數(shù)集的字母表示;2、掌握集合的列舉法與描述法,會用適當(dāng)?shù)姆椒ū硎炯希?、通過集合語言的學(xué)習(xí)與運用,培養(yǎng)分類思維和有序思維,從而提升數(shù)學(xué)思維能力.4、接受集合語言,經(jīng)歷利用集合語言描述元素與集合間關(guān)系的過程,養(yǎng)成規(guī)范意識,發(fā)展嚴(yán)謹(jǐn)?shù)淖黠L(fēng)。【教學(xué)重點】集合的表示法. 【教學(xué)難點】集合表示法的選擇與規(guī)范書寫.【教學(xué)設(shè)計】(1)通過生活中的實例導(dǎo)入集合與元素的概念;(2)引導(dǎo)學(xué)生自然地認(rèn)識集合與元素的關(guān)系;(3)針對集合不同情況,認(rèn)識到可以用列舉和描述兩種方法表示集合,然后再對表示法進行對比分析,完成知識的升華;(4)通過練習(xí),鞏固知識.(5)依照學(xué)生的認(rèn)知規(guī)律,順應(yīng)學(xué)生的學(xué)習(xí)思路展開,自然地層層推進教學(xué).
課 程數(shù)學(xué)章節(jié)內(nèi)容5.1角的概念推廣課程類型新課課時安排2課時指導(dǎo)教師 日期12月2 日學(xué)習(xí)目標(biāo)理解將角度從0°~360°推廣任意角。學(xué)習(xí)重點掌握角的度量、任意角學(xué)習(xí)難點理解象限角、界限角和終邊相同的角回顧(溫故知新)1、角度的概念:什么是角?始邊、終邊、頂點。 問題(順著問題找思路)1、正角.負(fù)角.零角.界限角和第幾象限的角概念?按照逆時針方向旋轉(zhuǎn)所形成的角叫做________,按照_____時針旋轉(zhuǎn)所形成的角叫負(fù)角。當(dāng)射線沒有作任何旋轉(zhuǎn)時,形成的角叫________(結(jié)合圖形講解) 2、在坐標(biāo)系中依次表示390°、30°、-330°,觀察圖像,探討終邊相等的角的特點、有什么關(guān)系?思考如何用集合表示終邊相等的角度?
學(xué)科數(shù)學(xué) 課 題 1.2 集合之間的關(guān)系班級 人數(shù) 授課時數(shù)2 課 型新課 周次 授課時間 教 學(xué) 目 的 知識目標(biāo):(1)掌握子集、真子集的概念; (2)掌握兩個集合相等的概念; (3)會判斷集合之間的關(guān)系. 能力目標(biāo):培養(yǎng)學(xué)生的分析問題能力解決問題的能力. 情感目標(biāo):通過師生互動,學(xué)生之間的討論分析,加強合作意識。 教學(xué)重點集合與集合間的關(guān)系及其相關(guān)符號表示. 教學(xué)難點真子集概念的理解.
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點】 一元二次不等式的解法?!窘虒W(xué)設(shè)計】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時安排】 2課時(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標(biāo)是什么?(3)當(dāng)y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
【教學(xué)目標(biāo)】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學(xué)習(xí),學(xué)會運用變量替換的方法,從而提升計算技能。【教學(xué)重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學(xué)難點】 利用變量替換解不等式或.【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *回顧思考 復(fù)習(xí)導(dǎo)入 問題 任意實數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數(shù),有 其幾何意義是:數(shù)軸上表示實數(shù)的點到原點的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結(jié) 引導(dǎo) 分析 了解 思考 回答 觀察 領(lǐng)會 復(fù)習(xí) 相關(guān) 知識 點為 進一 步學(xué) 習(xí)做 準(zhǔn)備 充分 借助 圖像 進行 分析
課 程數(shù)學(xué)章節(jié)內(nèi)容 課程類型新課課時安排2課時指導(dǎo)教師 日期12月 7 日學(xué)習(xí)目標(biāo)掌握用弧度表示角度的大小學(xué)習(xí)重點掌握用弧度表示角的方法學(xué)習(xí)難點弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學(xué)內(nèi)容:任意角度的推廣、終邊相等的角的表示方法; 2、已經(jīng)學(xué)過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數(shù),負(fù)角的弧度為_____數(shù),零角的弧度為零。 3、由弧度的定義可知,當(dāng)角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉(zhuǎn)化為弧度制?如何將弧度制轉(zhuǎn)化為角度制?(結(jié)合實例講解)練習(xí)(通過練習(xí)固要點)1、練習(xí)5.2.1; 2、例3;展示(通過展示強能力)(25分鐘)(包括學(xué)生展示回顧、問題、練習(xí)、小組總結(jié)等部分)1、引導(dǎo)各小組展示學(xué)習(xí)成果,在有各小組長指定小組成員展示,結(jié)束后,該組組長須總結(jié)或指定其他成員進行總結(jié)。 2、展示過程中,提醒同學(xué)注意老師的板書,或者請老師進行總結(jié),或題目的講解。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設(shè)向量、與x軸正半軸的夾角分別為和,則點A的坐標(biāo)為(),點B的坐標(biāo)為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導(dǎo)公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 25
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時,不妨設(shè)角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對應(yīng)的邊長分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時,同樣可以得到這個結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
集合的基本運算(1) 一、教學(xué)目標(biāo) 1、 知識與技能 (1)理解并集和交集的含義,會求兩個簡單集合的交集與并集。 (2)能夠使用Venn圖表達兩個集合的運算,體會直觀圖像對抽象概念理解的作用。 2、過程與方法 (1)進一步體會類比的作用 。 (2) 進一步樹立數(shù)形結(jié)合的思想。 3、情感態(tài)度與價值觀 集合作為一種數(shù)學(xué)語言,讓學(xué)生體會數(shù)學(xué)符號化表示問題的簡潔美。 二、教學(xué)重點與難點 教學(xué)重點:并集與交集的含義 。 教學(xué)難點:理解并集與交集的概念,符號之間的區(qū)別與聯(lián)系。
教學(xué)目標(biāo):知識與能力目標(biāo):1.能夠借助三角函數(shù)的定義及單位圓推導(dǎo)出三角函數(shù)的誘導(dǎo)公式 2.能夠運用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角的三角函數(shù)的化簡、求值問題情感目標(biāo):1.通過誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度 2.通過誘導(dǎo)公式探求工程中的合作學(xué)習(xí),培養(yǎng)學(xué)生團結(jié)協(xié)作的精神; 3. 通過誘導(dǎo)公式的運用,培養(yǎng)學(xué)生的劃歸能力,提高學(xué)生分析問題和解決問題的能力。 一導(dǎo)入:二、自學(xué)(閱讀教材第110---112頁,回答下列問題) 在直角坐標(biāo)系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關(guān)于軸的對稱點的特征: 。對于角而言:角關(guān)于軸對稱的角為_______公式二:__________ _________ _________
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗可以看到:當(dāng)重復(fù)實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
解析:當(dāng)截面與軸截面平行時,得到的截面的形狀為長方形;當(dāng)截面與軸截面斜交時,得到的截面的形狀是橢圓;當(dāng)截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結(jié):用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點的平面與圓錐的側(cè)面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結(jié):用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學(xué)知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學(xué)生的情感態(tài)度和價值觀.
兩道例題,第一道題師生共同分析,第二道題學(xué)生自己分析。部分學(xué)生在運用方程解答問題時,等量關(guān)系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過程中教師給予適當(dāng)?shù)闹笇?dǎo)。四、課堂小結(jié)這節(jié)課我們學(xué)習(xí)了有關(guān)打折銷售的知識,其實類似的問題我們小學(xué)也遇到過,今天在分析實際問題時又用到了列表法,通過這節(jié)課的學(xué)習(xí),談?wù)勀阍谥R方面的收獲。提示學(xué)生通過對《日歷中的方程》《我變高了》以及本節(jié)《打折銷售》學(xué)習(xí)還有以往經(jīng)驗,讓學(xué)生分組討論,用一元一次方程解決實際問題的一般步驟是什么?目的:讓學(xué)生進一步體會方程的作用,這里教師又提到學(xué)生的小學(xué)學(xué)習(xí),目的是想提示學(xué)生,將今天的方程解法與小學(xué)學(xué)過的算術(shù)方法相對比。此活動的目的是使學(xué)生不再處于被動狀態(tài),而成為積極的發(fā)現(xiàn)者。
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學(xué)生,估計該年級在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學(xué)生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).