提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

保育工作計(jì)劃范文模板

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.3《等比數(shù)列》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.3《等比數(shù)列》教學(xué)設(shè)計(jì)

    課題序號6-3授課形式講授與練習(xí)課題名稱等比數(shù)列課時2教學(xué) 目標(biāo)知識 目標(biāo)理解并掌握等比數(shù)列的概念,掌握并能應(yīng)用等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式。能力 目標(biāo)通過公式的推導(dǎo)和應(yīng)用,使學(xué)生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認(rèn)識問題、分析問題、解決問題的一般思路和方法 。素質(zhì) 目標(biāo)通過對等比數(shù)列知識的學(xué)習(xí),培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、正確總結(jié)的科學(xué)思維習(xí)慣和嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。教學(xué) 重點(diǎn)等比數(shù)列的概念及通項(xiàng)公式、前n項(xiàng)和公式的推導(dǎo)過程及運(yùn)用。教學(xué) 難點(diǎn)對等比數(shù)列的通項(xiàng)公式與求和公式變式運(yùn)用。教學(xué)內(nèi)容 調(diào)整無學(xué)生知識與 能力準(zhǔn)備數(shù)列的概念課后拓展 練習(xí) 習(xí)題(P.21): 3,4.教學(xué) 反思 教研室 審核

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.2《直線的方程》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.2《直線的方程》教學(xué)設(shè)計(jì)

    課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標(biāo)群體14級五高班教學(xué)環(huán)境教室學(xué)習(xí)目標(biāo)知識目標(biāo): (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計(jì)算方法. 職業(yè)通用能力目標(biāo): 正確分析問題的能力 制造業(yè)通用能力目標(biāo): 正確分析問題的能力學(xué)習(xí)重點(diǎn)直線的斜率公式的應(yīng)用.學(xué)習(xí)難點(diǎn)直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問教學(xué)媒體黑板、粉筆

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:2.3《一元二次不等式》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:2.3《一元二次不等式》教案設(shè)計(jì)

    教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應(yīng) 技能目標(biāo):1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結(jié)合圖像寫出一元二次不等式的解集 情感目標(biāo):體會知識之間的相互關(guān)聯(lián)性,體會數(shù)形結(jié)合思想的重要性教學(xué) 重點(diǎn) 和 難點(diǎn)重點(diǎn): 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點(diǎn): 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識點(diǎn)融會貫通,數(shù)形結(jié)合的思想方法在這有很好的運(yùn)用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:2.4《含絕對值的不等式》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:2.4《含絕對值的不等式》教案設(shè)計(jì)

    教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.4 含絕對值的不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解絕對值的幾何意義 2、掌握簡單的含絕對值不等式的解法 3、掌握含絕對值不等式的等價(jià)形式 技能目標(biāo):1、會解形如|ax+b|>c或|ax+b|<c的絕對值不等式 情感目標(biāo):通過學(xué)習(xí),體會數(shù)形結(jié)合、整體代換及等價(jià)轉(zhuǎn)換的數(shù)學(xué)思想方法教學(xué) 重點(diǎn) 和 難點(diǎn)重點(diǎn): 1、絕對值的幾何意義 2、基本絕對值不等式|x|>a或|x|<a的解 難點(diǎn): 1、去絕對值符號后不等式與原不等式保持等價(jià)性教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.4課后記不等式的基本性質(zhì)是初中就學(xué)習(xí)過的內(nèi)容,分式不等式的解法是哦本節(jié)課的一個重點(diǎn)和難點(diǎn),尤其是不等號另一邊不為0的情況,需要移項(xiàng),這一點(diǎn)在強(qiáng)調(diào)前學(xué)生考慮不到,因此解題錯誤多。區(qū)間是個新內(nèi)容,學(xué)生往往將連續(xù)的正數(shù)寫作一個區(qū)間,這是常見的錯誤,要進(jìn)行提醒。另外,在均值不等式這里稍微補(bǔ)充了一些內(nèi)容,引起學(xué)生的興趣。

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:3.3《函數(shù)的實(shí)際應(yīng)用舉例》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:3.3《函數(shù)的實(shí)際應(yīng)用舉例》教學(xué)設(shè)計(jì)

    課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實(shí)際生活中常見問題,結(jié)合中專學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時,形成一種意識,即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時深化學(xué)生對函數(shù)概念的理解和認(rèn)識,也為接下來學(xué)習(xí)指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問題入手,求得分段函數(shù)此部分知識以學(xué)生生活常識為背景,可以引導(dǎo)學(xué)生分析得出。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.1《平面的基本性質(zhì)》教學(xué)設(shè)計(jì)

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會用符號表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆柋硎军c(diǎn)、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.5《柱、錐、球及其簡單組合體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.5《柱、錐、球及其簡單組合體》教學(xué)設(shè)計(jì)

    課題序號 授課班級 授課課時2授課形式 教學(xué)方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學(xué)目的1、使學(xué)生認(rèn)識柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述生活中簡單物體的結(jié)構(gòu)。 2、讓學(xué)生了解柱、錐、球的側(cè)面積和體積的計(jì)算公式。 3、培養(yǎng)學(xué)生觀察能力、計(jì)算能力。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.1《數(shù)列的概念》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.1《數(shù)列的概念》教案設(shè)計(jì)

    【教學(xué)目標(biāo)】1. 理解數(shù)列的通項(xiàng)公式的意義,能根據(jù)通項(xiàng)公式寫出數(shù)列的任意一項(xiàng),以及根據(jù)其前幾項(xiàng)寫出它的一個通項(xiàng)公式.2. 了解數(shù)列的遞推公式,會根據(jù)數(shù)列的遞推公式寫出前幾項(xiàng).3.培養(yǎng)學(xué)生積極參與、大膽探索的精神,培養(yǎng)學(xué)生的觀察、分析、歸納的能力.教學(xué)重點(diǎn) 數(shù)列的通項(xiàng)公式及其應(yīng)用.教學(xué)難點(diǎn) 根據(jù)數(shù)列的前幾項(xiàng)寫出滿足條件的數(shù)列的一個通項(xiàng)公式.教學(xué)方法 本節(jié)課主要采用例題解決法.通過列舉實(shí)例,進(jìn)一步研究數(shù)列的項(xiàng)與序號之間的關(guān)系.通過三類題目,使學(xué)生深刻理解數(shù)列通項(xiàng)公式的意義,為以后學(xué)習(xí)等差數(shù)列與等比數(shù)列打下基礎(chǔ).【教學(xué)過程】 環(huán)節(jié)教學(xué)內(nèi)容師生互動設(shè)計(jì)意圖導(dǎo) 入⒈數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列. 注意:(1)數(shù)列中的數(shù)是按一定次序排列的; (2)同一個數(shù)在數(shù)列中可以重復(fù)出現(xiàn). 2. 數(shù)列的一般形式 數(shù)列a1,a2,a3,…,an,…,可記作{ an }. 3. 數(shù)列的通項(xiàng)公式: 如果數(shù)列{ an }的第n項(xiàng)an與n之間的關(guān)系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的通項(xiàng)公式. 教師引導(dǎo)學(xué)生復(fù)習(xí). 為學(xué)生進(jìn)一步理解通項(xiàng)公式,應(yīng)用通項(xiàng)公式解決實(shí)際問題做好準(zhǔn)備.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.2《等差數(shù)列》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.2《等差數(shù)列》教學(xué)設(shè)計(jì)

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點(diǎn) 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學(xué)目標(biāo)1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式;掌握等差中項(xiàng)的概念. 2. 逐步靈活應(yīng)用等差數(shù)列的概念和通項(xiàng)公式解決問題. 3.等差數(shù)列的前N項(xiàng)之和 . 4.培養(yǎng)學(xué)生分析、比較、歸納的邏輯思維能力. . 2. 3.教學(xué)重點(diǎn)等差數(shù)列的概念及其通項(xiàng)公式. 教學(xué)難點(diǎn)等差數(shù)列通項(xiàng)公式的靈活運(yùn)用. 教學(xué)方法情境教學(xué)法、自主探究式教學(xué)方法教學(xué)器材及設(shè)備黑板、粉筆復(fù)習(xí)提問提問內(nèi)容姓名成績1.?dāng)?shù)列的定義? 答: 2. 數(shù)列的通項(xiàng)公式? 答: 板書設(shè)計(jì) §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項(xiàng)公式 an=a1+(n-1)d. 等差數(shù)列的前n 項(xiàng)和公式: 例題 練習(xí)作業(yè)布置習(xí)題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學(xué)方法.充分利用現(xiàn)實(shí)情景,盡可能地增加教學(xué)過程的趣味性、實(shí)踐性.我再整個教學(xué)中強(qiáng)調(diào)學(xué)生的主動參與,讓學(xué)生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而達(dá)到使學(xué)生既獲得知識又發(fā)展智能的目的.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    授課 日期 班級16高造價(jià) 課題: §6.3等比數(shù)列 教學(xué)目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項(xiàng)公式; 3.掌握等比數(shù)列前 n 項(xiàng)和公式及推導(dǎo)過程,能用公式求相關(guān)參數(shù); 教學(xué)重點(diǎn)、難點(diǎn):運(yùn)用等比數(shù)列的通項(xiàng)公式求相關(guān)參數(shù) 授課方法: 任務(wù)驅(qū)動法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》 授課執(zhí)行情況及分析: 板書設(shè)計(jì)或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學(xué)生板書區(qū)) 2. 等比數(shù)列的通項(xiàng)公式 3.等比數(shù)列的求和公式

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點(diǎn)的坐標(biāo). 觀察圖8-13,直線、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點(diǎn)*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點(diǎn)

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識點(diǎn) 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對應(yīng)五個關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點(diǎn) 15

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識點(diǎn) 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會 注意 觀察 學(xué)生 是否 理解 知識 點(diǎn) 40

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個民航站中任意選取1個,有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上海→北京,上?!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    一、定義:  ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開式;上述二項(xiàng)展開式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開式的通項(xiàng),用表示;叫做二項(xiàng)展開式的通項(xiàng)公式.二、二項(xiàng)展開式的特點(diǎn)與功能1. 二項(xiàng)展開式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開式的功能注意到二項(xiàng)展開式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開式演變成一個組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問題的原始依據(jù).又注意到在的二項(xiàng)展開式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項(xiàng)式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.2《概率》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.2《概率》教學(xué)設(shè)計(jì)

    課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時數(shù)2授課班級 授課時間 教學(xué)地點(diǎn) 背景分析正確使用兩個基本原理的前提是要學(xué)生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動過的,目的就在于幫助學(xué)生對這一知識的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計(jì)中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實(shí)驗(yàn)中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績,指出其中的總體與個體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績是總體,每一個學(xué)生的數(shù)學(xué)期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動 求解 通過例題進(jìn)一步領(lǐng)會 35

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問題.2.能自建確定性函數(shù)模型解決實(shí)際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問題.重點(diǎn):利用函數(shù)模型解決實(shí)際問題;難點(diǎn):數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.

上一頁123...686970717273747576777879下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!