本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》的第五章的4.5.3函數(shù)模型的應用。函數(shù)模型及其應用是中學重要內容之一,又是數(shù)學與生活實踐相互銜接的樞紐,特別在應用意識日益加深的今天,函數(shù)模型的應用實質是揭示了客觀世界中量的相互依存有互有制約的關系,因而函數(shù)模型的應用舉例有著不可替代的重要位置,又有重要的現(xiàn)實意義。本節(jié)課要求學生利用給定的函數(shù)模型或建立函數(shù)模型解決實際問題,并對給定的函數(shù)模型進行簡單的分析評價,發(fā)展學生數(shù)學建模、數(shù)學直觀、數(shù)學抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實際問題.2.了解擬合函數(shù)模型并解決實際問題.3.通過本節(jié)內容的學習,使學生認識函數(shù)模型的作用,提高學生數(shù)學建模,數(shù)據(jù)分析的能力. a.數(shù)學抽象:由實際問題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學運算:運用函數(shù)模型解決實際問題;
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應關系,這種關系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關系式,初步體會應用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學和其他學科中的重要性. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:總結函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學運算:結合函數(shù)圖象或其單調性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學建模:在具體問題情境中,運用數(shù)形結合思想,將自然語言用數(shù)學表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.
函數(shù)在高中數(shù)學中占有很重要的比重,因而作為函數(shù)的第一節(jié)內容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結合三要素判斷函數(shù)相等.課程目標1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學會求函數(shù)的定義域與函數(shù)值。數(shù)學學科素養(yǎng)1.數(shù)學抽象:通過教材中四個實例總結函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
本節(jié)課是在學習了三角函數(shù)圖象和性質的前提下來學習三角函數(shù)模型的簡單應用,進一步突出函數(shù)來源于生活應用于生活的思想,讓學生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學“建模”思想,從而培養(yǎng)學生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學學科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學關系來建立數(shù)學模型; 3.數(shù)學運算:實際問題求解; 4.數(shù)學建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學建模思想,提高學生的建模、分析問題、數(shù)形結合、抽象概括等能力.
1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產卵數(shù)y與一定范圍內的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產卵數(shù).(結果取整數(shù)).
本節(jié)通過一些函數(shù)模型的實例,讓學生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學和其他學科中的廣泛應用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。
課程目標
1.能利用已知函數(shù)模型求解實際問題.
2.能自建確定性函數(shù)模型解決實際問題.
數(shù)學學科素養(yǎng)
1.數(shù)學抽象:建立函數(shù)模型,把實際應用問題轉化為數(shù)學問題;
2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;
3.數(shù)學運算:解答數(shù)學問題,求得結果;
4.數(shù)據(jù)分析:把數(shù)學結果轉譯成具體問題的結論,做出解答;
5.數(shù)學建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.
重點:利用函數(shù)模型解決實際問題;
難點:數(shù)模型的構造與對數(shù)據(jù)的處理.
教學方法:以學生為主體,采用誘思探究式教學,精講多練。
教學工具:多媒體。
一、 情景導入
我們知道,函數(shù)是描述客觀世界變化規(guī)律的數(shù)學模型,不用的變化規(guī)律需要用不同的函數(shù)模型來刻畫.請學生們思考:常見的函數(shù)模型都有哪些?面臨一個實際問題,該如何選擇恰當?shù)暮瘮?shù)模型
來刻畫它呢?
要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
二、預習課本,引入新課
閱讀課本148-150頁,思考并完成以下問題
1. 常見的數(shù)學模型有哪些?其中待定系數(shù)有哪些限制條件?
2. 解決實際問題的基本過程是什么?
要求:學生獨立完成,以小組為單位,組內可商量,最終選出代表回答問題。
三、新知探究
1.常見的數(shù)學模型有哪些?
(1)一次函數(shù)模型:f(x)=kx+b(k,b為常數(shù),k≠0);
(2)反比例函數(shù)模型:f(x)=+b(k,b為常數(shù),k≠0);
(3)二次函數(shù)模型:f(x)=ax2+bx+c(a,b,c為常數(shù),a≠0);
注意:二次函數(shù)模型是高中階段應用最為廣泛的模型,在高考的應用題考查中最為常見.
(4)指數(shù)函數(shù)模型:f(x)=abx+c(a,b,c為常數(shù),a≠0,b>0,且b≠1);
(5)對數(shù)函數(shù)模型:f(x)=mlogax+n(m,n,a為常數(shù),m≠0,a>0,且a≠1);
(6)冪函數(shù)模型:f(x)=axn+b(a,b,n為常數(shù),a≠0,n≠1);
(7)分段函數(shù)模型:這個模型實則是以上兩種或多種模型的綜合,因此應用也十分廣泛.
2.解答函數(shù)實際應用問題時,一般要分哪四步進行?
(1)審題——弄清題意,分清條件和結論,理順數(shù)量關系,初步選擇模型;
(2)建?!獙⒆匀徽Z言轉化為數(shù)學語言,將文字語言轉化為符號語言,利用數(shù)學知識建立相應的數(shù)學模型;
(3)求?!蠼鈹?shù)學模型,得出數(shù)學模型;
(4)還原——將數(shù)學結論還原為實際問題.
四、典例分析、舉一反三
題型一 一次函數(shù)與二次函數(shù)模型的應用
例1某水果批發(fā)商銷售每箱進價為40元的蘋果,假設每箱售價不得低于50元且不得高于55元.市場調查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱.價格每提高1元,平均每天少銷售3箱.
①求平均每天的銷售量y(箱)與銷售單價x(元/箱)之間的函數(shù)關系式;
②求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價x(元/箱)之間的函數(shù)關系式;
③當每箱蘋果的售價為多少元時,可以獲得最大利潤?最大利潤是多少?
【答案】①y=-3x+240(50≤x≤55,x∈N).②w=-3x2+360x-9 600(50≤x≤55,x∈N).③當每箱蘋果的售價為55元時,可以獲得最大利潤,且最大利潤為1 125元.
【解析】①根據(jù)題意,得y=90-3(x-50),化簡,得y=-3x+240(50≤x≤55,x∈N).
②因為該批發(fā)商平均每天的銷售利潤=平均每天的銷售量每箱銷售利潤.
所以w=(x-40)(-3x+240)=-3x2+360x-9 600(50≤x≤55,x∈N).
③因為w=-3x2+360x-9 600=-3(x-60)2+1 200,所以當x<60時,w隨x的增大而增大.
又50≤x≤55,x∈N,所以當x=55時,w有最大值,最大值為1 125.
所以當每箱蘋果的售價為55元時,可以獲得最大利潤,且最大利潤為1 125元.
解題技巧:(一次、二次函數(shù)模型的應用)
1.一次函數(shù)模型的應用
利用一次函數(shù)求最值,常轉化為求解不等式ax+b≥0(或≤0).解答時,注意系數(shù)a的正負,也可以結合函數(shù)圖象或其單調性來求最值.
2.二次函數(shù)模型的應用
構建二次函數(shù)模型解決最優(yōu)問題時,可以利用配方法、判別式法、換元法、討論函數(shù)的單調性等方法求最值,也可以根據(jù)函數(shù)圖象的對稱軸與函數(shù)定義域的對應區(qū)間之間的位置關系討論求解,但一定要注意自變量的取值范圍.
跟蹤訓練一
1、商店出售茶壺和茶杯,茶壺定價為每個20元,茶杯每個5元,該商店推出兩種優(yōu)惠辦法:
①買一個茶壺贈一個茶杯;
②按總價的92%付款.
某顧客需購買茶壺4個,茶杯若干個(不少于4個),若購買茶杯x(個),付款y(元),試分別建立兩種優(yōu)惠辦法中y與x之間的函數(shù)解析式,并討論該顧客買同樣多的茶杯時,兩種辦法哪一種更優(yōu)惠?
【答案】當4≤x<34時,y1
【解析】由優(yōu)惠辦法①可得函數(shù)解析式為y1=204+5(x-4)=5x+60(x≥4,且x∈N).優(yōu)惠辦法②可得y2=(5x+204)92%=4.6x+73.6(x≥4,且x∈N).y1-y2=0.4x-13.6(x≥4,且x∈N),
令y1-y2=0,得x=34.所以,當購買34個茶杯時,兩種優(yōu)惠辦法付款相同;
當4≤x<34時,y1 當x>34時,y1>y2,優(yōu)惠辦法②更省錢. 題型二 分段函數(shù)模型的應用 例2某公司生產一種產品,每年投入固定成本0.5萬元,此外每生產100件這種產品還需要增加投資0.25萬元,經(jīng)預測可知,市場對這種產品的年需求量為500件,當出售的這種產品的數(shù)量為t(單位:百件)時,銷售所得的收入約為5t-t2(萬元). (1)若該公司的年產量為x(單位:百件),試把該公司生產并銷售這種產品所得的年利潤表示為年產量 x的函數(shù); (2)當這種產品的年產量為多少時,當年所得利潤最大? 【答案】(1)f(x)=(2)當年產量為475件時,當年所得利潤最大. 【解析】 (1)當0 當x>5時,產品只能售出500件. 所以,f(x)= 即f(x)= (2)當0 所以當x=4.75(百件)時,f(x)有最大值, f(x)max=10.78125(萬元). 當x>5時,f(x)<12-0.255=10.75(萬元). 故當年產量為475件時,當年所得利潤最大. 解題技巧:(分段函數(shù)模型注意事項) 1.分段函數(shù)的“段”一定要分得合理,不重不漏. 2.分段函數(shù)的定義域為對應每一段自變量取值范圍的并集. 3.分段函數(shù)的值域求法:逐段求函數(shù)值的范圍,最后比較再下結論. 跟蹤訓練二 1.甲廠根據(jù)以往的生產銷售經(jīng)驗得到下面有關生產銷售的統(tǒng)計規(guī)律:每生產產品x(單位:百臺),其總成本為G(x)(單位:萬元),其中固定成本為2.8萬元,并且每生產1百臺的生產成本為1萬元(總成本=固定成本+生產成本),銷售收入R(x)= 假定該產品產銷平衡(即生產的產品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題: (1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本). (2)甲廠生產多少臺新產品時,可使盈利最多? 【答案】(1)f(x)= (2)當工廠生產4百臺時,可使盈利最大為3.6萬元. 【解析】解:(1)由題意得G(x)=2.8+x. ∴f(x)=R(x)-G(x)= (2)當x>5時,∵函數(shù)f(x)單調遞減,∴f(x)<8.2-5=3.2(萬元). 當0≤x≤5時,函數(shù)f(x)=-0.4(x-4)2+3.6, 當x=4時,f(x)有最大值為3.6萬元. 故當工廠生產4百臺時,可使盈利最大為3.6萬元. 題型三 指數(shù)或對數(shù)函數(shù)模型的應用 例3 一片森林原來的面積為a,計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當砍伐到面積的一半時,所用時間是10年, 為保護生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的. (1)求每年砍伐面積的百分比; (2)到今年為止,該森林已砍伐了多少年? (3)今后最多還能砍伐多少年? 【答案】(1)1-.(2)到今年為止,已砍伐了5年.(3)今后最多還能砍伐15年. 【解析】(1)設每年砍伐面積的百分比為x(0 (2)設經(jīng)過m年剩余面積為原來的, 則a(1-x)m=a,即,解得m=5, 故到今年為止,已砍伐了5年. (3)設從今年開始,最多還能砍伐n年, 則n年后剩余面積為a(1-x)n.令a(1-x)n≥a, 即(1-x)n≥, 解得n≤15.故今后最多還能砍伐15年. 解題技巧:(指數(shù)或對數(shù)函數(shù)模型注意事項) 1.本題涉及平均增長率的問題,求解可用指數(shù)型函數(shù)模型表示,通??梢员硎緸閥=N(1+p)x(其中N為原來的基礎數(shù),p為增長率,x為時間)的形式. 2.在實際問題中,有關人口增長、銀行利率、細胞分裂等增長問題,都常用到指數(shù)型函數(shù)模型.
轉載請注明出處!本文地址:
http://17025calibrations.com/worddetails_77965348.html1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應對。
二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風貌和活力。
今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產業(yè)全域覆蓋。
1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
(二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網(wǎng),2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網(wǎng)招標。
三是做大做強海產品自主品牌。工作隊于xx年指導成立的冬松村海產品合作社,通過與消費幫扶平臺合作,在工作隊各派出單位、社會團體、個人支持下,已獲得逾xx萬元銷售額。2022年底工作隊推動合作社海產品加工點擴建的工作方案已獲批,待資金下?lián)芎髮⒄絾訑U建工作。四是積極助企紓困,帶動群眾增收致富。工作隊利用去年建立的xx鎮(zhèn)產業(yè)發(fā)展工作群,收集本地企業(yè)在產品銷售、技術、人力、資金、運營、用地等方面的需求,并加大xx支持鄉(xiāng)村振興力度,xx助理赴各村委開展多場xx政策支持鄉(xiāng)村振興宣講活動,本季度有x萬元助農貸款獲批,xx萬貸款正在審批中。在壯大既有產業(yè)的同時,完善聯(lián)農帶農機制,一方面鼓勵企業(yè)雇用本地農戶就業(yè),另一方面計劃與本地農戶簽訂長期收購合同,讓農民種得放心、種得安心,帶動當?shù)厝罕姽餐赂弧?/p>
第一,主題教育是一次思想作風的深刻洗禮,初心傳統(tǒng)進一步得到回歸。第二,主題教育是一次沉疴積弊的集中清掃,突出問題進一步得到整治。第三,主題教育是一次強化為民服務的生動實踐,赤子之情進一步得到提振。第四,主題教育是一次激發(fā)創(chuàng)業(yè)擔當?shù)挠欣鯔C,發(fā)展層次進一步得到提升。2.第一,必須提領思想、武裝思想。第二,必須聚焦問題、由表及里。第三,必須領導帶頭、以上率下。第四,必須務實求實、認真較真。3.一是抬高政治站位,堅持大事大抓。二是堅持思想領先,狠抓學習教育。三是突出問題導向,深入整改糾治。四是堅持領導帶頭,發(fā)揮表率作用。4.一是立足“早”字抓籌劃。二是著眼“活”字抓學習。三是圍繞“統(tǒng)”字抓協(xié)調。5.一是形勢所需。二是任務所系。三是職責所在。四是制度所定。6.一要提升認識。二要積極作為。三要密切協(xié)作。
第二,要把調查研究貫穿始終,實干擔當促進發(fā)展。開展好“察實情、出實招”“破難題、促發(fā)展”“辦實事、解民憂”專項行動,以強化理論學習指導發(fā)展實踐,以深化調查研究推動解決發(fā)展難題。領導班子成員要每人牽頭XX個課題開展調查研究,XX月底前召開調研成果交流會,集思廣益研究對策措施。各部門、各單位要制定調研計劃,通過座談訪談、問卷調查、統(tǒng)計分析等方式開展調查研究,解決工作實際問題,幫助基層單位和客戶解決實際困難。第三,要把檢視問題貫穿始終,廉潔奉公樹立新風。認真落實公司主題教育整改整治工作方案要求,堅持邊學習、邊對照、邊檢視、邊整改,對標對表xxx新時代中國特色社會主義思想,深入查擺不足,系統(tǒng)梳理調查研究發(fā)現(xiàn)的問題、推動發(fā)展遇到的問題、群眾反映強烈的問題,結合巡視巡察、審計和內外部監(jiān)督檢查發(fā)現(xiàn)的問題,形成問題清單。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。