提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)分式方程說課稿

  • 初中數(shù)學(xué)北京版七年級(jí)下冊(cè)《不等式的基本性質(zhì)》說課稿

    初中數(shù)學(xué)北京版七年級(jí)下冊(cè)《不等式的基本性質(zhì)》說課稿

    一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實(shí)際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點(diǎn)一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點(diǎn)。可是說不等式的基本性質(zhì)這個(gè)概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點(diǎn)。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)和生活實(shí)際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會(huì)“從實(shí)際問題中抽象出數(shù)學(xué)模型,并回到實(shí)際問題中解釋和檢驗(yàn)”的過程。注重“概念的實(shí)際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實(shí)際問題中,在已有的學(xué)習(xí)經(jīng)驗(yàn)的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗(yàn)證”的探索過程,體會(huì)“轉(zhuǎn)化”的思想方法,體會(huì)數(shù)學(xué)的價(jià)值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運(yùn)用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點(diǎn)。

  • 北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)一元一次不等式與一次函數(shù)說課稿2篇

    北師大版初中數(shù)學(xué)八年級(jí)下冊(cè)一元一次不等式與一次函數(shù)說課稿2篇

    由于任何一個(gè)一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對(duì)應(yīng)的觀點(diǎn)考慮問題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識(shí):⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過程中,主要從以上兩個(gè)角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動(dòng)”―――學(xué)生動(dòng)口說,動(dòng)腦想,動(dòng)手做,親身經(jīng)歷知識(shí)發(fā)生發(fā)展的過程。2、“探”―――引導(dǎo)學(xué)生動(dòng)手畫圖,合作討論。通過探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。3、“樂”―――本節(jié)課的設(shè)計(jì)力求做到與學(xué)生的生活實(shí)際聯(lián)系緊一點(diǎn),直觀多一點(diǎn),動(dòng)手多一點(diǎn),使學(xué)生興趣高一點(diǎn),自信心強(qiáng)一點(diǎn),使學(xué)生樂于學(xué)習(xí),樂于思考。4、“滲”―――在整個(gè)教學(xué)過程中,滲透用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問題的辨證思想。

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

    活動(dòng)目的:(1)通過小組討論活動(dòng),讓學(xué)生理解坐標(biāo)系的特點(diǎn),并能應(yīng)用特點(diǎn)解決問題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團(tuán)結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補(bǔ)充)某地為了發(fā)展城市群,在現(xiàn)有的四個(gè)中小城市A,B,C,D附近新建機(jī)場(chǎng)E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各點(diǎn)的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進(jìn)步,從知識(shí)和能力上兩個(gè)方面總結(jié),老師予于肯定和鼓勵(lì)。目的:鼓勵(lì)學(xué)生大膽發(fā)言,敢于表達(dá)自己的觀點(diǎn),同時(shí)學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵(lì),激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習(xí)題5.5。B類:完成A類同時(shí),補(bǔ)充:(1)已知點(diǎn)A到x軸、y軸的距離均為4,求A點(diǎn)坐標(biāo);(2)已知x軸上一點(diǎn)A(3,0),B(3,b),且AB=5,求b的值。

  • 小學(xué)數(shù)學(xué)人教版五年級(jí)上冊(cè)《解方程》說課稿

    小學(xué)數(shù)學(xué)人教版五年級(jí)上冊(cè)《解方程》說課稿

    二、說教學(xué)目標(biāo)知識(shí)與技能:初步理解“方程的解”和“解方程”的含義,以及之間的聯(lián)系和區(qū)別。能用等式的性質(zhì)解形如X±a=b的方程,掌握解方程的格式和寫法。初步學(xué)會(huì)檢驗(yàn)?zāi)硞€(gè)數(shù)是否是方程的解,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。過程和方法:通過探索、討論、交流等活動(dòng),讓學(xué)生初步理解“方程的解”和“解方程”的概念。經(jīng)歷運(yùn)用等式的性質(zhì)探究方程解法的過程,體會(huì)方程的解法和等式的性質(zhì)之間的聯(lián)系。情感、態(tài)度與價(jià)值觀:1. 學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)有好奇心和求知欲。2. 在觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)中,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。重點(diǎn):方程的解和解方程的概念,初步掌握用等式性質(zhì)來解簡易方程的方法。難點(diǎn):區(qū)別方程的解和解方程的含義。解方程的算理。三、說教法與學(xué)法教法:新課標(biāo)指出,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者,充分發(fā)揮學(xué)生的主體性。根據(jù)這一理念,我在教學(xué)中通過觀察、猜想、驗(yàn)證等方式,自主探索、自主學(xué)習(xí)。有目的地運(yùn)用知識(shí)遷移的規(guī)律,引導(dǎo)學(xué)生進(jìn)行觀察、比較、分析、概括,培養(yǎng)學(xué)生的邏輯思維能力。學(xué)法:①讓學(xué)生學(xué)會(huì)以舊引新,掌握并運(yùn)用知識(shí)遷移進(jìn)行學(xué)習(xí)的方法;②讓學(xué)生學(xué)會(huì)自主發(fā)現(xiàn)問題,分析問題,解決問題的方法。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    1.使學(xué)生掌握用描點(diǎn)法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)2教案

    【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1教案

    解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對(duì)應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識(shí)解答實(shí)際問題的能力.三、板書設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=a(x-h)2+k的圖象與性質(zhì)1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=a(x-h)2+k的圖象與性質(zhì)1教案

    (3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來解.三、板書設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺(tái),還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),使課堂真正成為學(xué)生展示自我的舞臺(tái).充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)1教案

    雨后天空的彩虹、河上架起的拱橋等都會(huì)形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對(duì)稱軸、頂點(diǎn)坐標(biāo)、開口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對(duì)稱性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對(duì)稱性畫另一側(cè).

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2和y=ax2+c的圖象與性質(zhì)1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2和y=ax2+c的圖象與性質(zhì)1教案

    變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對(duì)角線長為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)平行線分線段成比例1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)平行線分線段成比例1教案

    證明:如圖,過點(diǎn)C作CF∥PD交AB于點(diǎn)F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時(shí),如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實(shí)以及推論得到相關(guān)比例式.如果圖中沒有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實(shí)及其推論得到相關(guān)比例式.三、板書設(shè)計(jì)平行線分線段成比例基本事實(shí):兩條直線被一組平行線所截,   所得的對(duì)應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對(duì)應(yīng)線段成比例通過教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個(gè)復(fù)雜的圖形分成幾個(gè)基本圖形,通過應(yīng)用鍛煉識(shí)圖能力和推理論證能力.在探索過程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)探索結(jié)論的方法和過程,發(fā)展學(xué)生的合情推理能力和有條理的說理表達(dá)能力.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)弧長及扇形的面積教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過復(fù)習(xí)圓的周長、圓的面積公式,探索n°的圓心角所對(duì)的弧長l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長呢?二、合作探究探究點(diǎn)一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大版初中七年級(jí)數(shù)學(xué)下冊(cè)用尺規(guī)作角說課稿

    北師大版初中七年級(jí)數(shù)學(xué)下冊(cè)用尺規(guī)作角說課稿

    活動(dòng)目的:通過兩個(gè)圖案設(shè)計(jì),一個(gè)是讓學(xué)生獨(dú)立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來完成,對(duì)本節(jié)課的知識(shí)進(jìn)一步鞏固應(yīng)用;另一個(gè)是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進(jìn)一步培養(yǎng)學(xué)生幾何語言表達(dá)能力,并積累尺規(guī)作圖的活動(dòng)經(jīng)驗(yàn)。活動(dòng)注意事項(xiàng):根據(jù)課堂時(shí)間安排,可靈活進(jìn)行處理,既可以作為本節(jié)課的實(shí)際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價(jià)值的數(shù)學(xué)。四、 教學(xué)設(shè)計(jì)反思1.利用現(xiàn)實(shí)情景引入新課,既能體現(xiàn)數(shù)學(xué)知識(shí)與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識(shí)。而在了解基礎(chǔ)知識(shí)以后,將其進(jìn)行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會(huì)知識(shí)的漸進(jìn)發(fā)展過程,增強(qiáng)思維能力的培養(yǎng)。同時(shí),在整個(gè)探究過程中,怎樣團(tuán)結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個(gè)途徑。

上一頁123...111213141516171819202122下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!