一、教材簡析 本單元教學內(nèi)容主要有:除法的初步認識、用2~6的 乘法口訣求商,解決實際問題。除法的初步認識分兩個層次:第一,以生活中常見的“每份同樣多”的實例合活動情境,讓學生建立“平均分”概念。第二,在“平均分”概念的基礎上引出除法運算,說明除法算式各部分的名稱。用口訣求商遵循由易到難的原則。解決問題是結(jié)合除法計算出現(xiàn)的。首先在除法的初步認識教學中 孕伏解決問題的內(nèi)容。然后在用2~6的乘法口訣求商之后編入了解決有關平均分的實際問題和需要用乘法和除法兩步計算解決簡單實際問題的內(nèi)容。
1、拿出一本數(shù)學教課書,和一只筆,提問:哪個重有些?2、肯定學生的回答,并讓學生“掂一掂”,然后讓學生說說有什么樣的感覺。3、從剛才的實踐得出結(jié)論:物體有輕有重。板書課題。二、觀察、操作領悟新知1、出示主題掛圖,物體的輕重的計量。觀察主題掛圖。(1、)請同學們觀察一下,這幅圖畫的是什么?(2、)這幅圖中的小朋友和阿姨在說什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R娢锲返馁|(zhì)量,我們現(xiàn)在來交流以下好嗎?表示物品有多重,可以用克和千克單位來表示。(4、)在學生說的同時,老師拿出有準備的東西展示。
一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質(zhì)地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系
方法總結(jié):判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結(jié):動手操作或結(jié)合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結(jié)論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向?qū)W生質(zhì)疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
1.知識目標:在回顧與思考中建立本章的知識框架圖,復習有關定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標:進一步體會證明的必要性,發(fā)展學生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結(jié)合實例體會反證法的含義;提高學生用規(guī)范的數(shù)學語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學學習活動,對數(shù)學的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學生合作交流的能力,以及獨立思考的良好學習習慣.重點:通過例題的講解和課堂練習對所學知識進行復習鞏固難點:本章知識的綜合性應用。【歸納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關系時,要找準題中表示不等關系的兩個量,并用代數(shù)式表示;正確理解題中的關鍵詞,如負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設計1.不等式的概念2.列不等式(1)找準題目中不等關系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關系.要注意常用的關鍵詞的含義:負數(shù)、非負數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關鍵詞中如果含有“不”“非”等文字,一般應包括“=”,這也是學生容易出錯的地方.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關鍵.三、板書設計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題.三、板書設計1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點:能夠運用平方差公式分解因式的多項式必須是二項式,兩項都能寫成平方的形式,且符號相反.運用平方差公式因式分解,首先應注意每個公式的特征.分析多項式的次數(shù)和項數(shù),然后再確定公式.如果多項式是二項式,通??紤]應用平方差公式;如果多項式中有公因式可提,應先提取公因式,而且還要“提”得徹底,最后應注意兩點:一是每個因式要化簡,二是分解因式時,每個因式都要分解徹底.
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
一、自覺依法納稅(二)我國稅收“取之于民,用之于民” 1、稅收的含義與基本特征 【學生活動】學生思考后回答。 【教師活動】稅收是國家為實現(xiàn)其職能,憑借其政治權(quán)力,依法無償?shù)厝〉秘斦杖氲幕拘问健?【教師活動】稅收具有強制性、無償性和固定性的基本特征。[1]強制性:不管你愿意還是不愿意,都必須交稅。[2]無償性:交了稅,沒有補償,更不會返還。[3]固定性:征稅是有標準的,不是無止境的,按標準收到一定數(shù)量即算完成納稅。 2、稅收的性質(zhì) 【教師活動】展示多媒體圖片,觀察稅收性質(zhì)是什么? 【學生活動】分析圖片,稅收的性質(zhì)。 【教師活動】每個人都與稅收緊密地聯(lián)系在一起,我們天天享受到的公共物品,無不有賴于稅收。接受教育要有學校,看病要有醫(yī)院,出行要有道路,保障國家安全要有國防,防洪、發(fā)電要有水利工程,這些都要依靠國家的稅收來為公眾提供公共服務。 【教師活動】播放國家免費為新冠肺炎患者治療的視頻。 【教師活動】勞動人民是稅收的最終受益者,我國的稅收是取之于民、用之于民的新型稅收。
一、復習導入1、口答:最大的一位數(shù)是幾?最小的兩位數(shù)是多少?這兩個數(shù)相差多少?2、數(shù)數(shù):10個10個地數(shù),從10數(shù)到100; 1個1個地數(shù),從91數(shù)到99; 問:99加1是多少?3、導入:你會從100開始接著往后數(shù)嗎?今天開始我們將要學習更大的數(shù),下面請你們觀察這幅圖。二、講授新課1、出示主題圖。(1)觀察這幅圖,說一說畫面上正在發(fā)生什么事情?(2)看著畫面你想知道什么問題?引導學生估算畫面上的體育館大約能坐多少人?2、板書課題:1000以內(nèi)數(shù)的認識。3、教學例1。(1)數(shù)一數(shù)。每人數(shù)出10個小方塊,說說你是怎么數(shù)的?板書:一個一個地數(shù),10個一是十。
1、復習萬以內(nèi)數(shù)的認識。 請同學們先來回憶一下,我們學了萬以內(nèi)數(shù)的哪些知識? 回憶學了萬以內(nèi)數(shù)的數(shù)數(shù)、讀數(shù)、寫數(shù)、數(shù)的組成、數(shù)位的含義、數(shù)的順序和大小比較、近似數(shù)以及整百、整千數(shù)的加減法……2、下面先請大家獨立做教材第3題,然后集體訂正。 指名讓學生說一說是怎么做的?3、寫一寫,再讀一讀。① 千位上是2個千、百位上是5個百、個位上是6個一。② 二千五百零六。4、 下面復習用計數(shù)單位表示數(shù),獨立完成書上第4題,想一想是怎樣做出來的。5、 復習近似數(shù)。請同學們看教材第5題,找出這段文字中哪些數(shù)是近似數(shù)?并畫出來。再請同學回答。
1、教學主題圖。(1)讓學生獨立觀察教材情境圖。思考問題:[1]這幅畫面是什么地方?[2]你發(fā)現(xiàn)了畫面中有什么活動內(nèi)容?(按順序)(2)在小組中互相說一說自己觀察到了什么內(nèi)容。你想到了什么?(3)各組代表匯報。(4)教師板書學生匯報的數(shù)據(jù)。[1]這是某個校園里的活動情景圖。從圖中發(fā)現(xiàn)了教學大樓前面的兩樹之間都插著4面不同顏色的旗子,升旗臺上也飄著一面國旗。[2]運動場上每4人一組小朋友在跳繩。[3]籃球場上每5人一組準備打籃球比賽。[4]板報下面擺的花是每3盆擺一組,旁邊還有很多盆花。(5)根據(jù)上面的信息(條件),想一想能提出用除法計算的問題嗎?大家在小組議一議。
1,猜一猜 師:這里有一個盒子,盒子里有一朵花,誰能猜出這朵花是什么顏色的?盒子里的花兒的顏色是確定的,為什么你們會有那么多不同的答案? ……師:好,老師給一個提示:紅色和黃色。會是什么顏色呢?師:要想準確猜出球的顏色,有一個統(tǒng)一的答案,怎么辦? 師:滿足你的愿望,第二個提示:不是紅色的。2、猜球游戲: 小朋友看,老師這里有一個白色和一個黃色的乒乓球,現(xiàn)在把它們放到盒子里,我們一起來玩一個猜一猜的游戲,好嗎? 師:我摸出其中一個,你猜猜是什么顏色的球呢?師:猜得準嗎?老師給你們一些提示吧:我摸出的不是黃球,那我摸出的是什么顏色的球?你是怎么猜的?師:那盒子里面的是什么顏色的球呢?你是怎么猜的?小朋友們很聰明,根據(jù)老師的提示能準確地判斷出球的顏色,這種方法就是我們今天要學習的簡單的推理。
問題情景,導入新課1、多媒體課件出示例1主題圖,問:圖上的小朋友在干什么?你們測量過體重嗎?測量了幾次?讀一年級剛?cè)雽W時,你測量的體重是多少?(學生自由匯報各自的體重情況)怎樣才能讓大家一看就明白我們班所有人的體重情況呢?二、活動體驗,探究新知1、電腦出示統(tǒng)計表(1): 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 師:現(xiàn)在我們就用“正”字記錄法來統(tǒng)計一下剛?cè)雽W時的體重(集體活動)2、活動結(jié)束后,師生共同將收集的數(shù)據(jù)整理后填入表格中。3、二年級時,我們的體重有什么變化呢? 電腦出示統(tǒng)計表(2) 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 集體進行統(tǒng)計活動,并將結(jié)果填入表中。4、討論:如果想把兩年的體重數(shù)據(jù)填入一個統(tǒng)計表中,該如何表示呢? 學生討論后,在黑板上出示表格(3):(單位:千克)
通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關鍵.