一、認識射線和直線1.認識線段的特征。(下面的板書填在一個表里)出示線段(長4分米)。提問:誰來告訴大家,黑板上的圖形叫什么?(板書:線段)提問:線段要怎樣畫?(按學生的回答畫線段)。畫線段時,開始和結束都要注意什么?指出:線段是直的,有兩個端點。是有限長的,我們可以用直尺量出線段的長度。誰能來量一量黑板上的線段,告訴大家,它的長是多少?,F在看老師再來畫一條5分米長的線段。2.認識射線。如果把線段的一端無限延長,(老師延長第二條線段)就得到一條射線。(板書:射線)把射線與線段比一比,它有什么特點?指出:射線也是直的,它只有一個端點。另一方沒有端點,可以無限地延長下去,是無限長的。直尺或三角尺可以畫出射線:先點一點,再沿著尺的一邊畫射線。請大家在練習本上畫一條射線。
教學目標:1、經歷簡單的收集、整理、描述和分析數據的過程。2、使學生初步了解數據的收集和整理過程,學會整理簡單的數據,會看簡單的統(tǒng)計表和統(tǒng)計圖,會根據統(tǒng)計圖表中的數據回答一些簡單的問題。3、使學生體驗解數據的收集、整理、描述和分析的過程,能發(fā)現信息并進行簡單的數據分析。4、體會到數學知識與實際生活緊密聯系,激發(fā)學生的學習興趣,培養(yǎng)學生細心觀察的良好學習品質。教學重點:繪制縱向復式條形統(tǒng)計圖。教學難點:根據統(tǒng)計圖發(fā)現問題、提出問題、解決問題。教具準備:課件。教學過程:一、情境導入:你們知道全球有多少人?中國有多少人嗎?那你們知道自己所在的區(qū)有多少人嗎?下面我們一起對收集到的信息進行整理和分析。二、探究新知:1、根據統(tǒng)計表,分別完成兩個單式條形統(tǒng)計圖2、根據兩個條形統(tǒng)計圖你能發(fā)現哪些信息?如果要在一個統(tǒng)計圖中描述這些信息怎么辦?在學習復式統(tǒng)計表時是怎么把兩個單式統(tǒng)計表合并的?
整個實踐活動大體分為三部分,即發(fā)現問題,分析問題,解決問題。根據閱讀材料內容和調查結果分析數據,提出解決問題的方案。發(fā)現問題的過程實際上是閱讀材料和進行調查的過程。這部分活動分為兩個層次:第一個層次是閱讀資料。資料中蘊涵著兩方面的信息,一是平時寄賀卡的行為消耗掉了大量的森林資源;另一方面,對廢紙的有效回收是解決問題的有效途徑之一。閱讀資料是整個實踐活動的基礎,也是第二層次的活動進行的原由。第二個層次是對個人和家庭去年收到賀卡情況的調查統(tǒng)計,這一層次是對第一層次活動的擴展和延伸,也是活動的細化和切入點。教材中列舉了第一小組的調查統(tǒng)計表,其中所涉及到的“總計”和“平均”兩個統(tǒng)計量,在后面的分析問題中有很重要的作用。分析問題的過程就是根據閱讀材料的內容和調查統(tǒng)計的結果分析數據的過程。這部分內容,貫穿了對統(tǒng)計結果和估算等數學知識的運用,需要學生綜合分析問題。
本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學生的求知欲望,在學生已有的認識基礎上,讓學生經歷了“觀察、思考、探究、實踐”的過程。在總結出同類項定義后,沒有按通常的做法,即直接分析定義中的兩個條件,強調兩個條件缺一不可,而是通過一組練習,讓學生在具體問題中體會定義中的兩個條件缺一不可,使他們先有較強烈的感性認識,而后,分析定義中的兩個條件,這樣會給學生留下更深刻、更牢固的印象.這樣的設計既符合學生的年齡特征,也符合“從感性到理性、從具體到抽象”的認知規(guī)律。數學不應只強調抽象、嚴謹,這樣不但會更顯數學教學的枯燥,而且會使學生在學習中出現畏難情緒,甚至喪失學習數學的興趣。通過本節(jié)課的教學,我認為還存在一些不足,一部分學生的學習能力還有待于進一步培養(yǎng)。如:學習同類項的概念時,當把字母順序進行改變后,部分學生就認為不是同類項。
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結:體現了數學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數學教學要緊密聯系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.
[師]同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?[生]我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍.適合什么人穿.但肯定與身高、胖瘦有關.[師]這位同學很善動腦,也愛觀察. S代表最小號,身高在150~155 cm的人適合穿S號.M號適合身高在155~160 cm的人群著裝…….廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產.如何確定組距與組數呢?分組組數的確定,不僅與數據多少有關,還與數據的取值情況有關.在實際決定組數時,常有一個嘗試過程:先定組距,再計算出相應的組數.看看這個組數是否大致符合確定組數的經驗法則.在嘗試中,往往要比較相應于幾個組距的組數,然后從中選定一個較為合適的組數.我們一起看下表:小亮的做法.
一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調查.你能根據下面兩個不完整的統(tǒng)計圖回答以下問題嗎?(1)這次抽樣調查中,共調查了多少名學生?(2)補全兩個統(tǒng)計圖;(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調查,這40天賣出這種報紙的份數如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數據分組,并繪制相應的頻數直方圖.解析:先找出這組數據的最大值和最小值,再以10為組距把數據分組,然后制作頻數直方圖.解:通過觀察這組數據的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數分布表:
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結:矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經歷矩形的概念和性質的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
(2)如果對應著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據兩矩形的對應邊是否成比例來判斷兩矩形是否相似;(2)根據矩形相似的條件列出等量關系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設兩個矩形相似,不妨設小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結:因為矩形的四個角均是直角,所以在有關矩形相似的問題中,只需看對應邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應為黃金比,此題應根據已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設肚臍到腳底的距離為x m,根據題意,得x1.60=0.60,解得x=0.96.設穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設和解決過程,體會黃金分割的文化價值,在應用中進一步理解相關內容,在實際操作、思考、交流等過程中增強學生的實踐意識和自信心.感受數學與生活的緊密聯系,體會數學的思維方式,增進數學學習的興趣.
2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數值可以算是1000+(2000-1000)×0.618= 1618.試驗的結果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數據.這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數找到最佳的數據,既節(jié)省了時間,也節(jié)約了原材料.●板書設計
1、如圖,OA、OB是兩條射線,C是OA上一點,D、E是OB上兩點,則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點到5點30分,時鐘的時針轉過了 度。5、一輪船航行到B處測得小島A的方向為北偏西30°,則從A處觀測此B處的方向為( ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點把線段AD分成2∶4∶3三部分,M是AD的中點,CD=6,求:線段MC的長。9、平面上有n個點(n≥2)且任意三個點不在同一直線上,經過每兩個點畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個球隊進行單循環(huán)比賽(每兩隊之間必須比賽一場),那么一共要進行多少場比賽?
解析:①以O為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學習了有關尺規(guī)作圖的相關知識,課堂教學內容以學生動手操作為主,在學生動手操作的過程中要鼓勵學生大膽動手,培養(yǎng)學生的動手能力和書面語言表達能力
方法總結:垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應手.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第2題【類型三】 動點問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點,求OP的長度范圍.解析:當點P處于弦AB的端點時,OP最長,此時OP為半徑的長;當OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結:解題的關鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.