方法總結(jié):解答此類(lèi)題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類(lèi)型三】 構(gòu)造直角三角形解決面積問(wèn)題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類(lèi)題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
三、課后自測(cè):1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動(dòng)點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng)。經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開(kāi)始沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移 動(dòng)過(guò)程中始終保持DE∥BC,DF∥AC,問(wèn)點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問(wèn)需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?
四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問(wèn)題的方法。五、目標(biāo)檢測(cè)設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長(zhǎng)方形拼成,則每個(gè)小長(zhǎng)方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長(zhǎng)40米、寬20米的長(zhǎng)方形空地上計(jì)劃新建一塊長(zhǎng)9米、寬7米的長(zhǎng)方形花圃.(1)若請(qǐng)你在這塊空地上設(shè)計(jì)一個(gè)長(zhǎng)方形花圃,使它的面積比學(xué)校計(jì)劃新建的長(zhǎng)方形花圃的面積多1平方米,請(qǐng)你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長(zhǎng)方形花圃周長(zhǎng)不變的情況下,長(zhǎng)方形花圃的面積能否增加2平方米?如果能,請(qǐng)求出長(zhǎng)方形花圃的長(zhǎng)和寬;如果不能,請(qǐng)說(shuō)明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡(jiǎn)單的圖形面積問(wèn)題.
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷(xiāo)售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買(mǎi).決定打折出售,但仍無(wú)人購(gòu)買(mǎi),結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量與銷(xiāo)售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷(xiāo)售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷(xiāo)售單價(jià)是多少時(shí) ,可以獲利9100元?
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷(xiāo)售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買(mǎi).決定打折出售,但仍無(wú)人購(gòu)買(mǎi),結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量與銷(xiāo)售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷(xiāo)售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷(xiāo)售單價(jià)是多少時(shí) ,可以獲利9100元?
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且?jiàn)A角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,體驗(yàn)用類(lèi)比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過(guò)程;通過(guò)畫(huà)圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識(shí)的興趣,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會(huì)運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來(lái)判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對(duì)應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過(guò)讓學(xué)生聯(lián)想、類(lèi)比全等三角形中SSA條件下三角形的不確定性,來(lái)達(dá)到加深理解判定方法2的條件的目的的.
(2)∵點(diǎn)G是BC的中點(diǎn),BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理3:對(duì)角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點(diǎn)到另一條直線的距離都相等,這個(gè)距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過(guò)分組討論、操作探究以及合作交流等方式來(lái)進(jìn)行,在探究?jī)蓷l平行線間的距離時(shí),要讓學(xué)生進(jìn)行合作交流.在解決有關(guān)平行四邊形的問(wèn)題時(shí),要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類(lèi)比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
【教學(xué)目標(biāo)】知識(shí)目標(biāo):⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會(huì)借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會(huì)判斷簡(jiǎn)單函數(shù)的奇偶性.能力目標(biāo):⑴ 通過(guò)利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學(xué)生的觀察能力;⑵ 通過(guò)函數(shù)奇偶性的判斷,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力.【教學(xué)重點(diǎn)】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡(jiǎn)單函數(shù)奇偶性的判定.【教學(xué)難點(diǎn)】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學(xué)設(shè)計(jì)】(1)用學(xué)生熟悉的主題活動(dòng)將所學(xué)的知識(shí)有機(jī)的整合在一起;(2)引導(dǎo)學(xué)生去感知數(shù)學(xué)的數(shù)形結(jié)合思想.通過(guò)圖形認(rèn)識(shí)特征,由此定義性質(zhì),再利用圖形(或定義)進(jìn)行性質(zhì)的判斷;(3)在問(wèn)題的思考、交流、解決中培養(yǎng)和發(fā)展學(xué)生的思維能力.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】3課時(shí).(90分鐘)【教學(xué)過(guò)程】
創(chuàng)設(shè)情景 興趣導(dǎo)入問(wèn)題 觀察鐘表,如果當(dāng)前的時(shí)間是2點(diǎn),那么時(shí)針走過(guò)12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?再經(jīng)過(guò)12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?.解決每間隔12小時(shí),當(dāng)前時(shí)間2點(diǎn)重復(fù)出現(xiàn).推廣類(lèi)似這樣的周期現(xiàn)象還有哪些? 動(dòng)腦思考 探索新知概念 對(duì)于函數(shù),如果存在一個(gè)不為零的常數(shù),當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個(gè)函數(shù)的一個(gè)周期. 由于正弦函數(shù)的定義域是實(shí)數(shù)集R,對(duì),恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡(jiǎn)稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問(wèn)題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫(huà)一次函數(shù)y=2x-3的圖象并回答下列問(wèn)題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說(shuō)出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫(huà)二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
問(wèn)題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過(guò)測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤(pán),使度盤(pán)的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無(wú)障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
(8)物價(jià)部門(mén)規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤(rùn)?最大利潤(rùn)為多少萬(wàn)元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過(guò)200萬(wàn)元,請(qǐng)你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫(xiě)出銷(xiāo)售該品牌童裝獲得的利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于76元,不高于78元,那么商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少元?(3)若童裝廠規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷(xiāo)售任務(wù),那么商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少元?
首先請(qǐng)學(xué)生分析:過(guò)B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來(lái)解.教師可請(qǐng)一名同學(xué)上黑板板書(shū),其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開(kāi)疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過(guò)評(píng)價(jià)黑板上的板演,總結(jié)解坡度問(wèn)題需要注意的問(wèn)題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過(guò)數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大?。诜治鰡?wèn)題時(shí),最好畫(huà)出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過(guò)中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類(lèi)型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?
(二)注重學(xué)法。堅(jiān)持“發(fā)展為本”,促進(jìn)學(xué)生個(gè)性發(fā)展,并在時(shí)間和空間諸方面為學(xué)生提供發(fā)展的充分條件,以培養(yǎng)學(xué)生的實(shí)踐能力、探索能力和創(chuàng)新精神為目標(biāo)。在教學(xué)過(guò)程中,注意引導(dǎo)學(xué)生怎樣有序觀察、怎樣概括結(jié)論,通過(guò)一系列活動(dòng),培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦的能力,使學(xué)生的觀察能力、抽象概括能力逐步提高,教會(huì)學(xué)生學(xué)習(xí)。使學(xué)生通過(guò)自己的努力有所感受,有所感悟,有所發(fā)現(xiàn),有所創(chuàng)新。小學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)該是生活中的數(shù)學(xué),是學(xué)生“自己的數(shù)學(xué)”。讓學(xué)生在生活情境中“尋”數(shù)學(xué),在實(shí)踐操作中“做”數(shù)學(xué),在現(xiàn)實(shí)生活中“用”數(shù)學(xué)?!皩W(xué)以致用”是學(xué)習(xí)的出發(fā)點(diǎn)和歸宿點(diǎn),也是學(xué)習(xí)數(shù)學(xué)的終結(jié)所在。讓學(xué)生感到數(shù)學(xué)的有趣和可學(xué),我們還應(yīng)注重將數(shù)學(xué)知識(shí)提升應(yīng)用到生活中,提高學(xué)生處理問(wèn)題的實(shí)際能力,讓學(xué)生真正做到會(huì)學(xué)習(xí)、會(huì)創(chuàng)造、會(huì)生活的一代新人,讓數(shù)學(xué)課堂真正成為學(xué)生活動(dòng)的、創(chuàng)造的課堂。三、優(yōu)化程序,突出主體。
6. 本題是一道實(shí)際應(yīng)用的題,可以結(jié)合生活實(shí)際舉例,在舉例中進(jìn)一步認(rèn)識(shí)分?jǐn)?shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個(gè)身高的 ; (讀作五分之三)表示把整個(gè)長(zhǎng)江的干流看作單位“1”,受污染的部分占整個(gè)長(zhǎng)江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分?jǐn)?shù)單位分別是: 、 、 、 、 。9. 本題有兩個(gè)知識(shí)點(diǎn):一是根據(jù)分?jǐn)?shù)的意義涂色,是把12個(gè)蘋(píng)果平均分成了2份,1份有6個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了3份,1份有4個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了4份,1份有3個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了6份,1份有2個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了12份,1份有1個(gè)蘋(píng)果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說(shuō)隨著分母的增大,幾分之一所表示的蘋(píng)果個(gè)數(shù),從 的6個(gè)到 的1個(gè),相應(yīng)地在減少。
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡(jiǎn)稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
接下來(lái)學(xué)生類(lèi)比有理數(shù)中相關(guān)概念,體會(huì)到了實(shí)數(shù)范圍內(nèi)的相反數(shù)、倒數(shù)、絕對(duì)值的意義,并進(jìn)一步掌握了實(shí)數(shù)的相反數(shù)、倒數(shù)、絕對(duì)值等知識(shí)。學(xué)生類(lèi)比有理數(shù)中相關(guān)運(yùn)算,體會(huì)到了實(shí)數(shù)范圍內(nèi)的運(yùn)算及運(yùn)算律。并探討用數(shù)軸上的點(diǎn)來(lái)表示實(shí)數(shù),將數(shù)和圖形聯(lián)系在一起,讓學(xué)生進(jìn)一步領(lǐng)會(huì)數(shù)形結(jié)合的思想,利用數(shù)軸也可以直觀地比較兩個(gè)實(shí)數(shù)的大小。然后通過(guò)相關(guān)練習(xí),檢測(cè)學(xué)生對(duì)實(shí)數(shù)相關(guān)知識(shí)的掌握情況。最后學(xué)生交流,互相補(bǔ)充,完成本節(jié)知識(shí)的梳理。布置作業(yè):所布置作業(yè)都是緊緊圍繞著“實(shí)數(shù)”的概念及運(yùn)用。設(shè)計(jì)選作題是為了給學(xué)有余力的學(xué)生留出自由發(fā)展的空間。五、關(guān)于板書(shū)設(shè)計(jì)我將板書(shū)設(shè)計(jì)為“提綱式”。這樣設(shè)計(jì)主要是力求重點(diǎn)突出,能加深學(xué)生對(duì)重點(diǎn)知識(shí)的理解和掌握,便于記憶。
然后能通過(guò)圖象找出變量的對(duì)應(yīng)關(guān)系在圖象上的體現(xiàn)。3、做一做:課本P154第1小題,學(xué)生在課本上填表,讓學(xué)生通過(guò)填表,體會(huì)變量之間的相依關(guān)系。4、師生小結(jié):和學(xué)生一起對(duì)剛才的三個(gè)例子進(jìn)行總結(jié),啟發(fā)學(xué)生思考三個(gè)例子的相同點(diǎn)和不同點(diǎn),如表現(xiàn)形式不同,有圖象、表格、代數(shù)表達(dá)式。相同的有它們都是兩個(gè)變量,確定其中一個(gè)變量后就能相應(yīng)確定另一個(gè)變量的值。從而使學(xué)生的認(rèn)識(shí)上升一個(gè)高度,并掌握函數(shù)的概念5、課堂練習(xí):完成課本P155隨堂練習(xí)。通過(guò)本練習(xí)的完成鞏固概念并會(huì)用概念去判斷兩個(gè)變量間的關(guān)系是否可看做函數(shù)。6、新課鞏固:以填空形式對(duì)本堂課進(jìn)行小結(jié),使學(xué)生對(duì)函數(shù)的概念及應(yīng)用有一定記憶。并通過(guò)對(duì)最后問(wèn)題的思考使學(xué)生意識(shí)到數(shù)學(xué)來(lái)自生活,并能應(yīng)用于生活。