提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

中班數(shù)學(xué)《10以內(nèi)的相鄰數(shù)》說(shuō)課稿

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    授課 日期 班級(jí)16高造價(jià) 課題: §6.3等比數(shù)列 教學(xué)目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個(gè)數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項(xiàng)公式; 3.掌握等比數(shù)列前 n 項(xiàng)和公式及推導(dǎo)過(guò)程,能用公式求相關(guān)參數(shù); 教學(xué)重點(diǎn)、難點(diǎn):運(yùn)用等比數(shù)列的通項(xiàng)公式求相關(guān)參數(shù) 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》 授課執(zhí)行情況及分析: 板書(shū)設(shè)計(jì)或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學(xué)生板書(shū)區(qū)) 2. 等比數(shù)列的通項(xiàng)公式 3.等比數(shù)列的求和公式

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)與一元二次方程2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)與一元二次方程2教案

    教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問(wèn)題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問(wèn)題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說(shuō)出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)二元一次方程與一次函數(shù)1教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)二元一次方程與一次函數(shù)1教案

    由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問(wèn)題的結(jié)果,但不是很準(zhǔn)確.三、板書(shū)設(shè)計(jì)1.二元一次方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過(guò)引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對(duì)應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí),充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)二元一次方程與一次函數(shù)2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)二元一次方程與一次函數(shù)2教案

    2. 在彈性限度內(nèi),彈簧的長(zhǎng)度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長(zhǎng)15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長(zhǎng)16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長(zhǎng)度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對(duì)于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問(wèn)題時(shí)從不同角度思考問(wèn)題,就會(huì)得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)與一元二次方程1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)與一元二次方程1教案

    解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問(wèn)題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)問(wèn)題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)利用三角函數(shù)測(cè)高2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)利用三角函數(shù)測(cè)高2教案

    問(wèn)題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過(guò)測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無(wú)障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大小.如圖7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)兩條直線的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時(shí),“同位角相等”是“這兩條直線平行”的充要條件. 【問(wèn)題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動(dòng)腦思考 探索新知 【新知識(shí)】 當(dāng)兩條直線、的斜率都存在且都不為0時(shí)(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過(guò)來(lái),如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當(dāng)直線、的斜率都是0時(shí)(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當(dāng)兩條直線、的斜率都不存在時(shí)(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當(dāng)直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時(shí),兩條直線相交. 由上面的討論知,當(dāng)直線、的斜率都存在時(shí),設(shè),,則 兩個(gè)方程的系數(shù)關(guān)系兩條直線的位置關(guān)系相交平行重合 當(dāng)兩條直線的斜率都存在時(shí),就可以利用兩條直線的斜率及直線在y軸上的截距,來(lái)判斷兩直線的位置關(guān)系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個(gè)不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問(wèn)題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 5*動(dòng)腦思考 探索新知 由同角三角函數(shù)關(guān)系,知 , 當(dāng)時(shí),得到 (1.5) 利用誘導(dǎo)公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應(yīng)使式子的左右兩端都有意義. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題的方法 15*鞏固知識(shí) 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進(jìn)行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應(yīng)用公式.要注意應(yīng)用這種變形方法來(lái)解決問(wèn)題. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 分析 說(shuō)明 啟發(fā) 引導(dǎo) 啟發(fā) 分析 觀察 思考 主動(dòng) 求解 觀察 思考 理解 口答 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 學(xué)生 自我 發(fā)現(xiàn) 歸納 25

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.2《直線與直線、直線與平面、平面與平面平行的判定》

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.2《直線與直線、直線與平面、平面與平面平行的判定》

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質(zhì) *創(chuàng)設(shè)情境 興趣導(dǎo)入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個(gè)平面內(nèi). 圖9?13 觀察教室中的物體,你能否抽象出這種位置關(guān)系的兩條直線? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 2*動(dòng)腦思考 探索新知 在同一個(gè)平面內(nèi)的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關(guān)系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時(shí)兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請(qǐng)畫出實(shí)物圖) 受實(shí)驗(yàn)的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書(shū)本,演示圖9?15(2)的異面直線位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 5

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.3《直線與直線、直線與平面、平面與平面所成的角》

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.3《直線與直線、直線與平面、平面與平面所成的角》

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設(shè)情境 興趣導(dǎo)入 在圖9?30所示的長(zhǎng)方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點(diǎn)P,過(guò)點(diǎn)P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 5*動(dòng)腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經(jīng)過(guò)空間任意一點(diǎn)分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡(jiǎn)便,經(jīng)常取一條直線與過(guò)另一條直線的平面的交點(diǎn)作為點(diǎn)(如圖9?31(2)) (1) 圖9-31(2) 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 12*鞏固知識(shí) 典型例題 例1 如圖9?32所示的長(zhǎng)方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因?yàn)?∥,所以為異面直線與所成的角.即所求角為. (2)因?yàn)椤?,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 觀察 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 17

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

    活動(dòng)目的:(1)通過(guò)小組討論活動(dòng),讓學(xué)生理解坐標(biāo)系的特點(diǎn),并能應(yīng)用特點(diǎn)解決問(wèn)題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團(tuán)結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補(bǔ)充)某地為了發(fā)展城市群,在現(xiàn)有的四個(gè)中小城市A,B,C,D附近新建機(jī)場(chǎng)E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各點(diǎn)的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進(jìn)步,從知識(shí)和能力上兩個(gè)方面總結(jié),老師予于肯定和鼓勵(lì)。目的:鼓勵(lì)學(xué)生大膽發(fā)言,敢于表達(dá)自己的觀點(diǎn),同時(shí)學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵(lì),激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習(xí)題5.5。B類:完成A類同時(shí),補(bǔ)充:(1)已知點(diǎn)A到x軸、y軸的距離均為4,求A點(diǎn)坐標(biāo);(2)已知x軸上一點(diǎn)A(3,0),B(3,b),且AB=5,求b的值。

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)利用四邊形邊的關(guān)系判定平行四邊形教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)利用四邊形邊的關(guān)系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程1教案

    探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程2教案

    (1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流。活動(dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程2教案

    二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):

  • 二年級(jí)數(shù)學(xué)下冊(cè)第一單元數(shù)據(jù)收集整理教案

    二年級(jí)數(shù)學(xué)下冊(cè)第一單元數(shù)據(jù)收集整理教案

    問(wèn)題情景,導(dǎo)入新課1、多媒體課件出示例1主題圖,問(wèn):圖上的小朋友在干什么?你們測(cè)量過(guò)體重嗎?測(cè)量了幾次?讀一年級(jí)剛?cè)雽W(xué)時(shí),你測(cè)量的體重是多少?(學(xué)生自由匯報(bào)各自的體重情況)怎樣才能讓大家一看就明白我們班所有人的體重情況呢?二、活動(dòng)體驗(yàn),探究新知1、電腦出示統(tǒng)計(jì)表(1): 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 師:現(xiàn)在我們就用“正”字記錄法來(lái)統(tǒng)計(jì)一下剛?cè)雽W(xué)時(shí)的體重(集體活動(dòng))2、活動(dòng)結(jié)束后,師生共同將收集的數(shù)據(jù)整理后填入表格中。3、二年級(jí)時(shí),我們的體重有什么變化呢? 電腦出示統(tǒng)計(jì)表(2) 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 集體進(jìn)行統(tǒng)計(jì)活動(dòng),并將結(jié)果填入表中。4、討論:如果想把兩年的體重?cái)?shù)據(jù)填入一個(gè)統(tǒng)計(jì)表中,該如何表示呢? 學(xué)生討論后,在黑板上出示表格(3):(單位:千克)

  • 小學(xué)數(shù)學(xué)北師大版二年級(jí)上冊(cè)《第三課課間活動(dòng)》教案

    小學(xué)數(shù)學(xué)北師大版二年級(jí)上冊(cè)《第三課課間活動(dòng)》教案

    1、結(jié)合具體生活場(chǎng)景,能運(yùn)用所學(xué)的乘法口訣解決簡(jiǎn)單的實(shí)際問(wèn)題,通過(guò)圖與式的對(duì)應(yīng),進(jìn)一步理解乘法的意義。 2、能熟練運(yùn)用口訣進(jìn)行計(jì)算,提高靈活運(yùn)用口訣解決實(shí)際問(wèn)題的能力。 3、體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,培養(yǎng)用數(shù)學(xué)的意識(shí),體驗(yàn)口訣在解決問(wèn)題中的作用。 運(yùn)用所學(xué)乘法解決簡(jiǎn)單的實(shí)際問(wèn)題。 結(jié)合實(shí)際情景理解乘法的意義。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、談話導(dǎo)入:在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了乘法,而且還學(xué)習(xí)了2和5的乘法口訣。這節(jié)課,老師想請(qǐng)同學(xué)們用這些跟乘法有關(guān)的知識(shí)來(lái)幫助老師一起解決生活中遇到的問(wèn)題,一起來(lái)看一看吧??鞓?lè)休息時(shí)間到了,學(xué)校的大操場(chǎng)突然熱鬧起來(lái)了,你們一定非常喜歡課件活動(dòng)吧!看,操場(chǎng)上同學(xué)們有的在玩老鷹捉小雞的游戲,有的在進(jìn)行乒乓球比賽,有的在跳繩,還有的在踢毽子……真熱鬧?。?/p>

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.5《柱、錐、球及其簡(jiǎn)單組合體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):9.5《柱、錐、球及其簡(jiǎn)單組合體》教學(xué)設(shè)計(jì)

    課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式 教學(xué)方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學(xué)目的1、使學(xué)生認(rèn)識(shí)柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述生活中簡(jiǎn)單物體的結(jié)構(gòu)。 2、讓學(xué)生了解柱、錐、球的側(cè)面積和體積的計(jì)算公式。 3、培養(yǎng)學(xué)生觀察能力、計(jì)算能力。

上一頁(yè)123...868788899091929394959697下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。