1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過復(fù)習(xí)圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對的弧長呢?二、合作探究探究點(diǎn)一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()
(8)物價(jià)部門規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過200萬元,請你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識,通過數(shù)值計(jì)算,去求出圖形中的某些邊的長度或角的大小.在分析問題時(shí),最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱,根據(jù)點(diǎn)C在對稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱.∵點(diǎn)C在對稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
問題2、如何用測角儀測量一個(gè)低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
③設(shè)每件襯衣降價(jià)x元,獲得的利潤為y元,則定價(jià)為 元 ,每件利潤為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個(gè)邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計(jì)算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個(gè)一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會(huì)忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
《朝天子·詠喇叭》:這篇散曲借詠喇叭,諷刺和揭露了明代宦官作威作福、魚肉百姓的罪惡行徑,表達(dá)了對宦官專橫跋扈、趾高氣揚(yáng)嘴臉的強(qiáng)烈憎惡之情。(2)根據(jù)上面的分析,適當(dāng)運(yùn)用輕重音、升降調(diào)等朗讀技巧,有感情地反復(fù)朗讀。(3)這幾首詩詞曲中,你最喜歡哪幾句?說說你喜歡的理由,而后有感情地誦讀。預(yù)設(shè) 【示例一】我喜歡“山河千古在,城郭一時(shí)非”。這兩句以祖國山河萬世永存與城郭一時(shí)淪陷進(jìn)行對比,突出詩人對收復(fù)大宋江山的信念和對元人的蔑視?!臼纠课蚁矚g“無限山河淚,誰言天地寬”。從這兩句我感受到了作者的滿腔悲憤。作者一直盼望明王朝東山再起,可時(shí)運(yùn)不濟(jì),命運(yùn)多舛,恢復(fù)國土、重整山河的宏愿一次次落空,令作者感到深深的失望。【示例三】我喜歡“贏,都變做了土;輸,都變做了土”。這兩句揭示了深刻的道理,意為國家間無論怎樣爭斗,終究會(huì)在歷史的長河中漸漸湮滅,在無盡的滄桑中被遺忘,化為沉寂的黃土。經(jīng)過前面的誦讀、品讀環(huán)節(jié),學(xué)生們對這幾首詩詞已經(jīng)有了了解,再安排學(xué)生背誦,可以使學(xué)生印象更深。
【示例二】我喜歡“斫去桂婆娑,人道是,清光更多”。這里的“桂婆娑”指帶給人民黑暗的婆娑桂影,它不僅包括南宋朝廷內(nèi)外的投降勢力,也包括了金人的勢力。作者在這一句中,運(yùn)用神話傳說,以超現(xiàn)實(shí)的奇思妙想,表達(dá)渴望掃除黑暗,讓光明普照人間的愿望?!驹O(shè)計(jì)意圖】在這一環(huán)節(jié),引導(dǎo)學(xué)生先理解詞作的意思和情感再誦讀,加深學(xué)生對詞作的印象,提升學(xué)生對詞作的誦讀感悟能力。五、反復(fù)誦讀,默寫詩詞1.學(xué)生獨(dú)立背誦。2.同桌互相檢查背誦。3.開展背誦比賽。4.集體默寫四首詞。結(jié)束語:誦讀古詩詞,可以陶冶我們的情操,激發(fā)我們的想象力,與古人對話。希望同學(xué)課下能自主閱讀一些經(jīng)典古詩詞,在感受它們魅力的同時(shí)提升我們的文學(xué)素養(yǎng)?!驹O(shè)計(jì)意圖】在前面幾個(gè)環(huán)節(jié),學(xué)生已經(jīng)從不同層次誦讀了四首詞,對這四首詞有了一定的理解。本環(huán)節(jié)讓學(xué)生在此基礎(chǔ)上用不同方式背誦,加深記憶。
要了解語言文字,通常的辦法是翻查字典辭典。這是不錯(cuò)的。但是現(xiàn)在許多少年仿佛有這樣一種見解:翻查字典辭典只是國文課預(yù)習(xí)的事情,其他功課就用不到,自動(dòng)地閱讀文藝作品當(dāng)然更無須那樣了。這種見解不免錯(cuò)誤。產(chǎn)生這個(gè)錯(cuò)誤不是沒有緣由的。其一,除了國文教師以外,所有輔導(dǎo)少年的人都不曾督促少年去利用字典辭典。其二,現(xiàn)在還沒有一種適于少年用的比較完善的字典和辭典。雖然有這些緣由,但是從原則上說,無論什么人都該把字典辭典作為終身伴侶,以便隨時(shí)解決語言文字的疑難。字典辭典即使還不完善,能利用總比不利用好。不過字典辭典的解釋,無非取比照的或是說明的辦法,究竟和原字原辭不會(huì)十分貼合。例如“躊躇”,解作“猶豫”,就是比照的辦法;“情操”,解作“最復(fù)雜的感情,其發(fā)作由于精神的作用,就是愛美和尊重真理的感情”,就是說明的辦法。完全不了解什么叫作“躊躇”、什么叫作“情操”的人看了這樣的解釋,自然能有所了解。但是在文章中間,該用“躊躇”的地方不能換上“猶豫”,該用“情操”的地方也不能拿說明的解釋語去替代,可見從意義上、情味上說,原字原辭和字典辭典的解釋必然多少有點(diǎn)距離。
預(yù)設(shè) 簡·愛是一個(gè)堅(jiān)強(qiáng)樸實(shí)、剛?cè)岵?jì)、獨(dú)立自主、積極進(jìn)取的女性。她出身卑微,相貌平凡,但并不以此自卑。她蔑視權(quán)貴的驕橫,嘲笑他們的愚笨,顯示出自立自強(qiáng)的人格和美好的理想追求。她有頑強(qiáng)的生命力,從不向命運(yùn)低頭,最后有了自己所向往的美好生活。簡·愛對自己的思想和人格有著理性的認(rèn)識,對自己的幸福和情感有著堅(jiān)定的追求。在她身上,體現(xiàn)了新女性的特點(diǎn):自尊、自重、自立、自強(qiáng)。六、探究小說的主題思想【設(shè)計(jì)意圖】在理解小說內(nèi)容和人物形象的基礎(chǔ)上,進(jìn)一步探究小說的主題思想。小組討論,《簡·愛》的主題思想是什么?請簡要分析。預(yù)設(shè) 《簡·愛》闡釋了這樣一個(gè)主題:人的價(jià)值=尊嚴(yán)+愛。小說中簡·愛的人生追求有兩個(gè)基本“旋律”:富于激情、幻想和反抗精神;追求超越個(gè)人幸福的至高境界。這部小說通過敘述一個(gè)孤女坎坷不幸的人生經(jīng)歷,成功塑造了一個(gè)不安于現(xiàn)狀、不甘于受辱、敢于抗?fàn)幍呐孕蜗?,反映了一個(gè)小寫的人要成為一個(gè)大寫的人的渴望。
劉紹棠,中國當(dāng)代著名鄉(xiāng)土文學(xué)作家,1936年2月出生于河北通縣(今北京通州區(qū))大運(yùn)河畔的儒林村,1949年開始發(fā)表作品,一生留下了500多萬字的鄉(xiāng)土文學(xué)作品,包括《地火》《京門臉子》等多部長篇小說,《蒲柳人家》《運(yùn)河的槳聲》等多部中篇小說,以及《青枝綠葉》《蛾眉》等多部短篇小說集。他的作品在國內(nèi)多次獲獎(jiǎng),在國際上亦有影響。劉紹棠的作品內(nèi)容各不相同,但都藝術(shù)地再現(xiàn)了其家鄉(xiāng)大運(yùn)河畔不同歷史時(shí)期的風(fēng)土人情和社會(huì)風(fēng)貌,描繪了充滿詩情畫意的鄉(xiāng)風(fēng)水色、世俗人情。20世紀(jì)80年代以來,劉紹棠不遺余力地倡導(dǎo)鄉(xiāng)土文學(xué),創(chuàng)作上堅(jiān)持“中國氣派,民族風(fēng)格,地方特色,鄉(xiāng)土題材”。文學(xué)評論家指出,他的作品格調(diào)清新淳樸,鄉(xiāng)土色彩濃郁,形成了獨(dú)具特色的大運(yùn)河鄉(xiāng)土文學(xué)風(fēng)格。
詩歌創(chuàng)作個(gè)性十足,難以用統(tǒng)一的規(guī)律去分析,然而發(fā)掘一些欣賞詩歌的一般性的思路和角度,可以讓閱讀詩歌有章可循,減少學(xué)生讀詩時(shí)的畏難情緒。在第1課時(shí)中,我以朗讀為貫穿課堂的抓手,讓學(xué)生通過思考“怎么讀”,自覺地去發(fā)現(xiàn)并分析詩歌中的意象,理解詩歌大意,讓學(xué)生對詩歌有初步的理解和體會(huì)。第2課時(shí)在整體把握詩歌的基礎(chǔ)上,具體去分析詩歌中富有表現(xiàn)力的語言,訓(xùn)練學(xué)生深入思考的能力,引導(dǎo)學(xué)生梳理詩歌的情感脈絡(luò),體會(huì)詩中作者的情感變化,理解詩人想要表達(dá)的真摯情感,并通過拓展閱讀讓學(xué)生嘗試自己解讀詩歌,幫助學(xué)生鞏固所學(xué)的閱讀詩歌的方法。兩節(jié)課的側(cè)重點(diǎn)不同,但都圍繞這首詩的特點(diǎn)和整體教學(xué)思路進(jìn)行規(guī)劃,做到“一課一得”。寫作背景舒婷初中畢業(yè)后下鄉(xiāng)插隊(duì),后又當(dāng)過工人。在國家蒙難、人民遭殃的非常歲月,備嘗艱辛的舒婷,內(nèi)心的迷惘、痛苦可想而知。1978年12月,中國迎來了具有重大歷史意義的十一屆三中全會(huì),開啟了改革開放的歷史新時(shí)期。1979年4月,詩人面對祖國擺脫苦難、正欲奮飛的情景,以自己獨(dú)有的抒情方式寫下了此詩。