2、感知色彩明暗的對比,激發(fā)幼兒對色彩的感受力,體驗色彩與生活環(huán)境的關(guān)系; 3、發(fā)展幼兒觀察力,想象力和口語表達(dá)能力。 活動準(zhǔn)備: 1、幼兒已初步認(rèn)識深色和淺色; 2、多媒體幻燈片夜景圖; 3、幼兒作畫工具(畫紙、油畫棒、無尖鉛筆); 4、半成品幾張(一張鋪好淺色底色的關(guān)成品、一張在淺色底色上涂好的深色的半成品); 5、歌曲《螢火蟲》磁帶。 活動過程: 1、欣賞歌曲,引出課題。 幼兒欣賞歌曲《螢火蟲》,小朋友你們知道歌曲里唱的是誰嗎?螢火蟲什么時候進(jìn)來?(是晚上)。當(dāng)夜幕降臨,到處是一片漆黑的時候,小動物迷路的時候,螢火蟲打著它的小燈籠把小動物們安全地送回了家。
活動目標(biāo)1、初步理解年、月、日的概念,感知年、月、日之間的關(guān)系;了解一年有12個月,一個月有30(31)天,一年共有365天。2、通過游戲,知道日歷等是記錄或查看日期的工具;學(xué)習(xí)查看它們的方法。3、培養(yǎng)幼兒觀察和想象能力,發(fā)展幼兒的交往能力。 活動準(zhǔn)備1、字卡(年、月、日)各一份、自制外型似房子關(guān)的1月—12月的月歷(大月、小月、2月房子大小有區(qū)分);年歷、臺歷和掛歷各一份;2、小字卡(年、月、日)和數(shù)字卡片(12、28、30、31、365)鉛筆、人手一份;3、2007年年歷人手一張;
2、在探索操作活動中,知道按序分合不易漏掉數(shù)字,在觀察中發(fā)現(xiàn)兩部分?jǐn)?shù)之間的增1減1的關(guān)系。3、會用較完整的語言講述操作過程?;顒訙?zhǔn)備:1、教具: 放大的操作材料。2、學(xué)具: 購物券、水果卡片,記錄卡。活動過程:一、復(fù)習(xí)8以內(nèi)的加減
2、主動收拾整理班級的玩具等?;顒訙?zhǔn)備:準(zhǔn)備統(tǒng)計表、筆,幼兒學(xué)習(xí)包《我們的班級》活動過程:1、 談話引題。引導(dǎo)幼兒觀察班級的物品、玩具等環(huán)境。 2、統(tǒng)計物品統(tǒng)計物品及玩具的數(shù)量,并用數(shù)字記錄在統(tǒng)計表上。
2.能聽口述應(yīng)用題,在算盤上復(fù)習(xí)4以內(nèi)的加減混合運(yùn)算,并能完整說出算式。 3.在游戲和操作中練習(xí)看數(shù)撥珠,看珠報數(shù)?;顒訙?zhǔn)備:1.蘋果圖及標(biāo)記圖,數(shù)卡1、2、3、4、5若干。 2.每人一張分合卡、一支記號筆、5個動物玩具。 3.四位數(shù)的電話號碼若干?;顒舆^程:1. 出示數(shù)卡5,今天數(shù)字5也到幼兒園來了,它說要到算盤上找到它的珠寶寶,你知道是哪顆珠寶寶嗎? 幼兒回答,教師小結(jié);哦,原來上珠寶寶就是5呀,那一顆下珠是幾呀?三顆下珠呢?現(xiàn)在我們知道了,下珠寶寶1、2、3、4都比5小,現(xiàn)在數(shù)字5要來考考小朋友了,請你把5分成兩份,看看誰的方法又多又準(zhǔn)確。教師觀察幼兒操作情況,并指導(dǎo)幼兒將分成結(jié)果記錄在分合卡上。
2、 從公園回憶中感受到自己在成長,萌發(fā)對公園的留戀?;顒訙?zhǔn)備:1、 已經(jīng)有一定的一物多玩的游戲經(jīng)驗。2、 舊報紙若干張(數(shù)量超過活動人數(shù)的兩倍),鈴鐺一副?;顒舆^程:一、引出主題,激發(fā)興趣。帶幼兒到公園入口。當(dāng)教師說下雨了,請幼兒雙手拿一張舊報紙頂在頭上當(dāng)小丑帽,并在原地按鈴聲節(jié)奏跳一跳,進(jìn)行腿部力量練習(xí)。
2、在蠶寶寶的自身運(yùn)動中了解蠶一生的變化。3、在體育活動中感受、體驗運(yùn)動的快樂?;顒訙?zhǔn)備:布袋21只、彩色絲帶若干、錄音機(jī)、磁帶、安排活動場地。活動過程:1、熱身運(yùn)動。師:小朋友們,讓我們來活動活動!2、集中討論:你們喜歡春天嗎?為什么?3、集體找春天。邊念兒歌邊做動作。4、學(xué)習(xí)蠶爬。(1)教師講解動作要領(lǐng):師:“小腿縮一縮,屁股撅一撅,小手撐一撐,身體往前趴?!保?)幼兒集體練習(xí)。(3)個別示范。師:我發(fā)現(xiàn),有一只蠶寶寶爬的特別棒!我們來看看他是怎么爬的!
二、說教學(xué)目標(biāo)根據(jù)初中歷史課程標(biāo)準(zhǔn)及教師用書與本教材的結(jié)構(gòu)和內(nèi)容,結(jié)合著七年級學(xué)生他們的認(rèn)知結(jié)構(gòu)及其心理特征,我制定了以下的教學(xué)目標(biāo):知識與技能: 通過本課的學(xué)習(xí),使學(xué)生了解唐朝時我國唯一的女皇武則天的統(tǒng)治,開元時期政治、經(jīng)濟(jì)的發(fā)展情況和長安城的繁榮等主要史實。過程與方法:播放視頻,導(dǎo)入新課。接著讓學(xué)生閱讀課文。本課應(yīng)著重于盛唐是如何繁盛的,從武則天和唐玄宗這兩個人的統(tǒng)治中尋找羅列繁盛的表現(xiàn)。除充分使用教材中的各類圖片輔助教學(xué)外,我還組織學(xué)生搜集其他資料來證實唐朝盛世的壯觀景象,與課題中的“氣象”相吻合,以加深學(xué)生的印象,有利于課堂教學(xué)的氣氛和效果。通過學(xué)習(xí)武則天和唐玄宗的政策措施,學(xué)會正確客觀地評價兩位歷史人物,初步培養(yǎng)學(xué)生學(xué)會運(yùn)用客觀、辯證的方法分析人物和歷史現(xiàn)象的能力。
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時,要做到不重不漏,分類標(biāo)準(zhǔn)不同時,分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學(xué)知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識來解釋,關(guān)鍵是要找到生活實例與數(shù)學(xué)知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
1.能從統(tǒng)計圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導(dǎo)入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
大家上午好!今天我們在這里舉行2023屆高三一輪復(fù)習(xí)動員大會,首先向任勞任怨、扎實工作的老師們表示真誠的感謝,向勤奮學(xué)習(xí)、努力拼搏的同學(xué)們致以親切的問候!此時此刻我們相聚在這里時,每位同學(xué)都又有了一個新的名字:高三的戰(zhàn)士。高一是基礎(chǔ),高二是關(guān)鍵,高三是決戰(zhàn)。經(jīng)過了高一的鍛造,高二的歷練,如今我們終于站在了決戰(zhàn)的起點,決戰(zhàn)意味著什么?決戰(zhàn)意味著炮與火的考驗,血與淚的洗禮,進(jìn)與退的選擇,成與敗的決斷。那么,高三的勇士們,你們準(zhǔn)備好了嗎?
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當(dāng)a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計教學(xué)過程中,應(yīng)通過活動使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅實的基礎(chǔ).
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進(jìn)行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運(yùn)算法則并根據(jù)題意準(zhǔn)確列出算式也是解題的關(guān)鍵.三、板書設(shè)計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學(xué)、解決問題等方法進(jìn)行教學(xué),使學(xué)生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃酉雽W(xué).在本節(jié)教學(xué)中,要堅持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時,p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計反比例函數(shù)的應(yīng)用實際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識的綜合經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程,提高運(yùn)用代數(shù)方法解決問題的能力,體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識.通過反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗學(xué)科整合思想.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
方法總結(jié):對等式進(jìn)行變形,必須在等式的兩邊同時進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動,感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.
方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;