如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類(lèi)型一】 利用二次函數(shù)求矩形面積的最大值
1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類(lèi)型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()
Ⅵ.活動(dòng)與探究某種“15選5”的彩票的獲獎(jiǎng)號(hào)碼是從1~15這15個(gè)數(shù)字小選擇5個(gè)數(shù)字(可以重復(fù)),若彩民所選擇的5個(gè)數(shù)字恰與獲獎(jiǎng)號(hào)碼相同,即可獲得特等獎(jiǎng).小明觀察了最近100期獲獎(jiǎng)號(hào)碼,發(fā)現(xiàn)其中竟有51期有重號(hào)(同一期獲獎(jiǎng)號(hào)碼有2個(gè)或2個(gè)以上的數(shù)字相同),66期有連號(hào)(同一期獲獎(jiǎng)號(hào)碼中有2個(gè)或2個(gè)以上的數(shù)字相鄰).他認(rèn)為獲獎(jiǎng)號(hào)碼不應(yīng)該有這么多重號(hào)和連號(hào),獲獎(jiǎng)號(hào)碼可能不是隨機(jī)產(chǎn)生的,有失公允.小明的觀點(diǎn)有道理嗎?重號(hào)的概率大約是多少?利用計(jì)算器模擬實(shí)驗(yàn)可以估計(jì)重號(hào)的概率.[過(guò)程]兩人組成一個(gè)小組,利用計(jì)算器產(chǎn)生1~15之間的隨機(jī)數(shù).并記錄下來(lái),每產(chǎn)生5個(gè)隨機(jī)數(shù)為一次實(shí)驗(yàn),每組做10次實(shí)驗(yàn),看看有幾次重號(hào)和連號(hào).將全班的數(shù)據(jù)匯總集中起來(lái),就可估計(jì)出1~15之間的整數(shù)中隨機(jī)抽出5個(gè)數(shù)出現(xiàn)重號(hào)和連號(hào)的概率.
說(shuō)教學(xué)難點(diǎn):圖形的放大與縮小的原理是“大小改變,形狀不變“。針對(duì)小學(xué)生的年齡和認(rèn)知特點(diǎn),教材中“圖形的放大與縮小”從對(duì)應(yīng)邊的比相等來(lái)進(jìn)行安排,而對(duì)應(yīng)角的不變也是形狀不變必備的條件,是學(xué)生體會(huì)圖形的相似所必需的。學(xué)生在學(xué)習(xí)的過(guò)程中很有可能會(huì)質(zhì)疑到這一問(wèn)題。(為什么直角三角形只需要同時(shí)把兩條直角邊放大與縮???)所以我把“學(xué)生在觀察、比較、思考和交流等活動(dòng)中,感受圖形放大、縮小,初步體會(huì)圖形的相似。(對(duì)應(yīng)邊的比相等,對(duì)應(yīng)角不變)”做為本節(jié)課的難點(diǎn)。說(shuō)教法、學(xué)法:通過(guò)直觀演示,情景激趣,結(jié)合生活讓學(xué)生形成感性認(rèn)識(shí);引導(dǎo)學(xué)生經(jīng)過(guò)觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學(xué)習(xí)、驗(yàn)證等過(guò)程形成理性認(rèn)識(shí)。教學(xué)過(guò)程:(略)
問(wèn)題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過(guò)測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤(pán),使度盤(pán)的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無(wú)障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
1.會(huì)用度量法和疊合法比較兩個(gè)角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問(wèn)題.3.理解兩個(gè)角的和、差、倍、分的意義,會(huì)進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開(kāi)的兩個(gè)角哪個(gè)大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱(chēng)為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時(shí),手拿一量角器逐一測(cè)量∠α的度數(shù).請(qǐng)你運(yùn)用所學(xué)的知識(shí)分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請(qǐng)說(shuō)說(shuō)你的方法.解析:角的比較方法有測(cè)量法和疊合法,其中測(cè)量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.
問(wèn)題6:觀察剛才所畫(huà)的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過(guò)程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過(guò)觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來(lái)歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以1厘米/秒的速度向 移動(dòng),點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以2厘米/秒的速度向點(diǎn) 移動(dòng).如果點(diǎn) , 分別從點(diǎn) , 同時(shí)出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長(zhǎng)度改為7cm,對(duì)本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號(hào)化,設(shè)定一個(gè)量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗(yàn)并作答(五)布置作業(yè)1、請(qǐng)欣賞一道借用蘇軾詩(shī)詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩(shī)詞(通過(guò)列方程,算出周瑜去世時(shí)的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個(gè)位三,個(gè)位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強(qiáng)調(diào)對(duì)古文化詩(shī)詞的閱讀理解,貫通數(shù)學(xué)的實(shí)際應(yīng)用。有兩種解題思路:枚舉法和方程法。
在解決問(wèn)題的過(guò)程中,學(xué)生使用到了生活中常見(jiàn)的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺(jué)到利用身邊的工具完全可以達(dá)到解決問(wèn)題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實(shí)際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺(jué)成功之處在于:1、立足于問(wèn)題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會(huì)形成主動(dòng)尋求知識(shí)的內(nèi)在動(dòng)力。學(xué)生在這種學(xué)習(xí)情境中主動(dòng)學(xué)習(xí)到知識(shí),比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問(wèn)題意識(shí)。問(wèn)題解決后,教師應(yīng)讓學(xué)生從解決的問(wèn)題出發(fā),通過(guò)對(duì)題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問(wèn)題,這樣不僅讓學(xué)生掌握了更多的知識(shí),還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。
準(zhǔn)備200張卡片,在上面分別寫(xiě)上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號(hào)碼記下,這個(gè)號(hào)碼就算是消息的發(fā)布者,暫時(shí)不放回。第二次,從布袋中盲目取出三張,記下號(hào)碼,這算是第一批聽(tīng)到消息的三個(gè)人,留一張暫時(shí)不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號(hào)碼.這算是第二批聽(tīng)到消息的三個(gè)人.留一張暫時(shí)不放回,其余兩張放回.把第二次摸出的并暫時(shí)留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒(méi)有被重復(fù)摸出的?上述消息傳播問(wèn)題是很有實(shí)用價(jià)值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問(wèn)題,因?yàn)閭魅静〉膫鞑ゾ拖裣鞑ヒ粯?,既然重?fù)聽(tīng)到消息的可能性是很大的,當(dāng)然重復(fù)感染的可能性也是很大的。
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
在答案的匯總過(guò)程中,要肯定學(xué)生的探索,愛(ài)護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對(duì)學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評(píng)價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類(lèi)歸納,探索規(guī)律:① 從加數(shù)的不同符號(hào)情況(可遇見(jiàn)情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(lèi)(同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對(duì)值相加;加數(shù)的絕對(duì)值相減)⑤ 從和的符號(hào)確定方面(同號(hào)兩數(shù)相加符號(hào)的確定;異號(hào)兩數(shù)相加符號(hào)的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個(gè)計(jì)算題,目的是想查看學(xué)生學(xué)的效果如何,是否對(duì)哪類(lèi)題型還留有疑問(wèn)。 6. 自我評(píng)價(jià): 這堂課我覺(jué)得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識(shí)穿插在學(xué)與練當(dāng)中,充分地利用了課堂有限的時(shí)間,并且能讓學(xué)生邊學(xué)邊練,及時(shí)鞏固。 當(dāng)然這堂課也有很多不足之處,我覺(jué)得自己對(duì)于課堂上學(xué)生做練習(xí)時(shí)出現(xiàn)的一些小問(wèn)題處理還沒(méi)有能夠處理得很好,我應(yīng)該吸取經(jīng)驗(yàn)教訓(xùn),再以后的教學(xué)中加以改進(jìn)。 另外對(duì)于多個(gè)有理數(shù)相乘時(shí)的符號(hào)問(wèn)題,我覺(jué)得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補(bǔ)充,讓學(xué)生加深理解。從中我也得到一個(gè)教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識(shí)點(diǎn),才能更好地幫學(xué)生形成一個(gè)系統(tǒng)的知識(shí)系統(tǒng)!
將一個(gè)圓分成三個(gè)大小相同的扇形,你能計(jì)算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴交流設(shè)計(jì)意圖:通過(guò)引導(dǎo)學(xué)生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關(guān)系為后面學(xué)習(xí)扇形面積公式做鋪墊,體現(xiàn)知識(shí)的延續(xù)性。(六)、鞏固練習(xí).如圖,把一圓分成三個(gè)扇形,你能求出這三個(gè)扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結(jié)學(xué)完這節(jié)課你有哪些收獲?設(shè)計(jì)意圖:通過(guò)小節(jié)讓學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行梳理,使所學(xué)知識(shí)能合理地納入自身的知識(shí)結(jié)構(gòu)。(八) 布置作業(yè):中等學(xué)生:P125. 1優(yōu)等生: P125. 2,3我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。
一、說(shuō)教材“認(rèn)識(shí)圖形”是“空間與圖形”的重要內(nèi)容之一。學(xué)生在此之前已經(jīng)對(duì)三角形有了一定的認(rèn)識(shí)。因?yàn)榻滩牡男?biāo)題為“探索與發(fā)現(xiàn)”,所以我主要是通過(guò)讓學(xué)生在自主探索中學(xué)習(xí)本課內(nèi)容。先讓學(xué)生明確“內(nèi)角”的意義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少。結(jié)合學(xué)生已經(jīng)有的知識(shí)經(jīng)驗(yàn),對(duì)于本課我確立了以下幾個(gè)教學(xué)目標(biāo):1、通過(guò)測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的度數(shù)和等于180度。已知三角形兩個(gè)角的度數(shù),會(huì)求第三個(gè)角的度數(shù)。2、滲透猜想--驗(yàn)證--結(jié)論--運(yùn)用--引申的學(xué)習(xí)方法,培養(yǎng)學(xué)生動(dòng)手操作和合作交流的能力,培養(yǎng)學(xué)生的探究意識(shí)。3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂(lè)。把教學(xué)重難點(diǎn)設(shè)定為驗(yàn)證三角形的內(nèi)角和是180°,并學(xué)會(huì)應(yīng)用。
1、教學(xué)內(nèi)容九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書(shū)(北師大版)四年級(jí)下冊(cè)第27頁(yè)至29頁(yè)的內(nèi)容及相關(guān)練習(xí)題。2、教材簡(jiǎn)析“三角形分類(lèi)”是新課程教材中“空間與圖形”領(lǐng)域內(nèi)容的一部分。學(xué)生在學(xué)習(xí)此內(nèi)容之前,已經(jīng)學(xué)習(xí)了三角形的認(rèn)識(shí),能夠在物體的面中找出三角形,學(xué)習(xí)了角的知識(shí),認(rèn)識(shí)了常見(jiàn)的角,為學(xué)生研究三角形的特征,從角和邊的不同角度對(duì)三角形進(jìn)行分類(lèi)做好了有力的知識(shí)支撐。三角形是最簡(jiǎn)單也是最基本的多邊形,一切多邊形都可以分割成若干個(gè)三角形,學(xué)好這部分內(nèi)容,為學(xué)習(xí)其他多邊形積累了知識(shí)經(jīng)驗(yàn),為進(jìn)一步學(xué)習(xí)三角形的有關(guān)知識(shí)打下了基礎(chǔ)。3、教學(xué)目標(biāo)根據(jù)教材的內(nèi)容及學(xué)生的知識(shí)現(xiàn)狀和年齡心理特點(diǎn),我制定了以下教學(xué)目標(biāo)。①知識(shí)目標(biāo);學(xué)生通過(guò)觀察、操作、比較、發(fā)現(xiàn)三角形角和邊的特征,會(huì)給三角形分類(lèi),理解并掌握各種三角形的特征。
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁?xún)?nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類(lèi)題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ))來(lái)說(shuō)明兩直線平行.若沒(méi)有公共截線,則需作出兩直線的截線輔助證明.三、板書(shū)設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁?xún)?nèi)角互補(bǔ),兩直線平行本節(jié)課通過(guò)經(jīng)歷探索平行線的判定方法的過(guò)程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.