1.進(jìn)一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點(diǎn))2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點(diǎn))一、情境導(dǎo)入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球?yàn)橼A,那么這個游戲是否公平?二、合作探究探究點(diǎn)一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機(jī)摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識相關(guān)的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機(jī)取的一個數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
接著,教師引導(dǎo)學(xué)生與大自然對話,說一說:“大自然,我想對你說……”。設(shè)計意圖:提升學(xué)生對大自然的情感與認(rèn)識,感恩自然,喜歡在大自然中活動。活動三:閱讀繪本,感恩自然學(xué)生閱讀教材第30頁到33頁的繪本《大自然的語言》,教師引導(dǎo)學(xué)生說一說,大自然不僅給我們物質(zhì)的饋贈、精神的饋贈,還給我們帶來智慧的啟迪。(板書:感恩)設(shè)計意圖:再次感受與大自然的共在的情感。環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機(jī)引導(dǎo)。設(shè)計意圖:梳理總結(jié),體驗(yàn)收獲與成功的喜悅,內(nèi)化提升學(xué)生的認(rèn)識與情感。環(huán)節(jié)四:回歸生活,拓展延伸課后,請同學(xué)們走進(jìn)自然,擁抱自然。設(shè)計意圖:將課堂所學(xué)延伸到學(xué)生的日常生活中,有利于落實(shí)行為實(shí)踐。
1. 知識與技能 通過學(xué)生活動,幫助學(xué)生理解三角形按角分類的方法,掌握直角三角形、銳角三角形、鈍角三角形的概念;知道等腰三角形、等邊三角形。培養(yǎng)學(xué)生觀察,動手操作和抽象概括的能力;發(fā)展空間觀念。2.過程與方法 使學(xué)生經(jīng)歷觀察、操作、比較、概括等過程,在分類中體會每一類三角形角的特點(diǎn);發(fā)現(xiàn)邊的特點(diǎn)。滲透集合思想。3.情感態(tài)度與價值觀 激發(fā)學(xué)生的主動參與意識,使學(xué)生感受到成功的喜悅,更增強(qiáng)學(xué)習(xí)興趣?!窘虒W(xué)重點(diǎn)】 直角三角形、銳角三角形、鈍角三角形的概念。【教學(xué)難點(diǎn)】發(fā)現(xiàn)三角形角的特點(diǎn)。【教學(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法。【課前準(zhǔn)備】多媒體【課時安排】 1課時【教學(xué)過程】(一)復(fù)習(xí)導(dǎo)入 師:說一說下面的角各是什么角。
2.過程與方法 經(jīng)歷圓錐的認(rèn)識過程,體驗(yàn)探究發(fā)現(xiàn)的學(xué)習(xí)方法。3.情感態(tài)度與價值觀 感受數(shù)學(xué)與實(shí)際生活的聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣?!窘虒W(xué)重點(diǎn)】 掌握圓錐的特征,及各部分名稱?!窘虒W(xué)難點(diǎn)】圓錐高的測量方法?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法。【課前準(zhǔn)備】多媒體課件、圓錐、直尺
(一)復(fù)習(xí)導(dǎo)入 師:什么是體積?生:物體所占空間的大小是物體的體積。師:怎樣求長方體和正方體的體積?生:長方體的體積=底面積×高 正方體的體積=底面積×高師:圓的面積計算公式是怎樣推導(dǎo)出來的?課件出示:生:把圓轉(zhuǎn)化成長方形,長方形的長等于圓柱底面周長的一半,寬等于半徑,所以圓的面積:S = πr2猜測:把圓柱轉(zhuǎn)化成什么立體圖形來推導(dǎo)圓柱的體積公式呢?呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
2.過程與方法 通過研究三角形、四邊形的內(nèi)角和,讓學(xué)生經(jīng)歷觀察、思考、推理、歸納的過程,滲透猜想--驗(yàn)證--結(jié)論--運(yùn)用的學(xué)習(xí)方法,培養(yǎng)學(xué)生動手操作和合作交流的能力,增強(qiáng)學(xué)生的主體探究意識。3.情感態(tài)度與價值觀 培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂?!窘虒W(xué)重點(diǎn)】 引導(dǎo)學(xué)生發(fā)現(xiàn)三角形內(nèi)角和是180°,并能應(yīng)用這一知識解決一些簡單問題;通過量、拼、算等探究活動,使學(xué)生了解任意四邊形的內(nèi)角和都是3600 。【教學(xué)難點(diǎn)】 用不同方法驗(yàn)證三角形的內(nèi)角和是180°;引導(dǎo)學(xué)生利用轉(zhuǎn)化的方法把四邊形或多邊形轉(zhuǎn)化成三角形,發(fā)現(xiàn)多邊形的邊數(shù)與內(nèi)角和之間的關(guān)系?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法?!菊n前準(zhǔn)備】多媒體、不同類型的三角形各一個、量角器。
2.過程與方法 通過實(shí)踐操作、猜想驗(yàn)證、合作探究,經(jīng)歷發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”這一性質(zhì)的活動過程,發(fā)展空間觀念,培養(yǎng)邏輯思維能力,體驗(yàn)“做數(shù)學(xué)”的成功。3.情感態(tài)度與價值觀 (1)發(fā)現(xiàn)生活中的數(shù)學(xué)美,會從美觀和實(shí)用的角度解決生活中的數(shù)學(xué)問題。 (2)學(xué)會從全面、周到的角度考慮問題。 【教學(xué)重點(diǎn)】 理解、掌握“三角形任意兩邊之和大于第三邊”的性質(zhì);理解兩點(diǎn)間的距離的含義?!窘虒W(xué)難點(diǎn)】 引導(dǎo)探索三角形的邊的關(guān)系,并發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”的性質(zhì)?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法?!菊n前準(zhǔn)備】多媒體、學(xué)具袋【課時安排】 1課時【教學(xué)過程】(一)復(fù)習(xí)導(dǎo)入 師:什么樣的圖形叫三角形?生交流:由3條線段圍成的圖形(每相鄰兩條線段的端點(diǎn)相連)叫做三角形。
(二)探究新知 1. 探究圓錐的體積的計算方法,學(xué)習(xí)例2。師:圓錐的體積和圓柱的體積有沒有關(guān)系呢?圓柱的底面是圓,圓錐的底面也是圓……通過實(shí)驗(yàn)探究一下圓錐和圓柱體積之間的關(guān)系。小組合作探索:(1)各組準(zhǔn)備好等底、等高的圓柱、圓錐形容器。(2)用倒沙子或水的方法試一試。(3)圓錐的體積與同它等底等 高的圓柱體積之間有什么關(guān)系?(4)小組活動,師巡視指導(dǎo)。2.推導(dǎo)圓錐體積的計算方法。 (1)課件演示等底等高的圓柱和圓錐
(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認(rèn)識了比例,知道兩個比怎樣才能組成比例,下面請同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個比的比值相等,都是0.6,所以(1)題的兩個比能組成比例。生2:我來回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個比的比值不相等,所以第(2)題的兩個比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來學(xué)習(xí)用另一種方法來判斷兩個比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書課題:比例的基本性質(zhì))?!驹O(shè)計意圖】復(fù)習(xí)學(xué)生已有的知識,喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗(yàn),教師的提問吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識開了一個好頭。
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
解:(1)設(shè)第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設(shè)計列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.
解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負(fù)號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進(jìn)行運(yùn)算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分?jǐn)?shù)的加減法類比得出同分母分式的加減法.易錯點(diǎn)一是符號,二是結(jié)果的化簡.在教學(xué)中,讓學(xué)生參與課堂探究,進(jìn)行自主歸納,并對易錯點(diǎn)加強(qiáng)練習(xí).從而讓學(xué)生對知識的理解從感性認(rèn)識上升到理性認(rèn)識.
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練
方法總結(jié):在等腰三角形有關(guān)計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應(yīng)值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應(yīng)的因變量的值,但是需計算.本節(jié)課的教學(xué)內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學(xué)生才接觸到,學(xué)生感覺有點(diǎn)難.這節(jié)課的重點(diǎn)是讓學(xué)生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點(diǎn)是理解這兩種表示方法的優(yōu)缺點(diǎn).就此問題,通過讓學(xué)生對幾個例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點(diǎn)來解決,這樣學(xué)生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當(dāng)?shù)姆椒?/p>
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.三、板書設(shè)計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動手能力
解:(1)電動車的月產(chǎn)量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應(yīng),月產(chǎn)量y是時間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實(shí)現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢,實(shí)質(zhì)是觀察自變量增大時,因變量是隨之增大還是減?。鍟O(shè)計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學(xué)好本章的基礎(chǔ),教學(xué)中立足于學(xué)生的認(rèn)知基礎(chǔ),激發(fā)學(xué)生的認(rèn)知沖突,提升學(xué)生的認(rèn)知水平,使學(xué)生在原有的知識基礎(chǔ)上迅速遷移到新知上來