三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.
教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過(guò)程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過(guò)程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點(diǎn)Q時(shí)在路燈AD下影子的長(zhǎng)度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對(duì)應(yīng)線段的長(zhǎng)度.三、板書設(shè)計(jì)投影的概念與中心投影投影的概念:物體在光線的照射下,會(huì) 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點(diǎn)光源的光線形成的 投影變化規(guī)律影子是生活中常見(jiàn)的現(xiàn)象,在探索物體與其投影關(guān)系的活動(dòng)中,體會(huì)立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過(guò)在燈光下擺弄小棒、紙片,體會(huì)、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問(wèn)題、分析問(wèn)題的能力.
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測(cè):檢測(cè):晚上,小華在馬路的一側(cè)散步,對(duì)面有一路燈,當(dāng)小華筆直地往前走時(shí),他在這盞路燈下的影子也隨之向前移動(dòng).小華頭頂?shù)挠白铀?jīng)過(guò)的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁(yè)習(xí)題5.1八、板書設(shè)計(jì)投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個(gè)話題,接著經(jīng)歷實(shí)踐、探索的過(guò)程,掌握了中心投影的含義,進(jìn)一步根據(jù)燈光光線的特點(diǎn),由實(shí)物與影子來(lái)確定路燈的位置,能畫出在同一時(shí)刻另一物體的影子,還要求大家不僅要自己動(dòng)手實(shí)踐,還要和同伴互相交流.同時(shí)要用自己的語(yǔ)言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實(shí)踐操作能力,合作交流能力,語(yǔ)言表達(dá)能力.
故線段d的長(zhǎng)度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長(zhǎng)度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長(zhǎng).已知三條線段長(zhǎng)分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長(zhǎng)與前面三條線段的長(zhǎng)能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒(méi)有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長(zhǎng)可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長(zhǎng)有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說(shuō)明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長(zhǎng)的比值為2:7,某 天同一時(shí)刻測(cè)得一棟樓的影長(zhǎng)為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長(zhǎng)。
●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問(wèn)題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問(wèn)題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過(guò)溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過(guò)比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問(wèn)題,總結(jié)常見(jiàn)的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_________ ,周長(zhǎng)為________. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
1.能從統(tǒng)計(jì)圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點(diǎn))2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢(shì).(難點(diǎn))一、情境導(dǎo)入某次射擊比賽,甲隊(duì)員的成績(jī)?nèi)缦拢?1)根據(jù)統(tǒng)計(jì)圖,確定10次射擊成績(jī)的眾數(shù)、中位數(shù),說(shuō)說(shuō)你的做法,并與同伴交流.(2)先估計(jì)這10次射擊成績(jī)的平均數(shù),再具體算一算,看看你的估計(jì)水平如何.二、合作探究探究點(diǎn)一:從折線統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢(shì)廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護(hù)局公布的2006~2010年這五年各年的全年空氣質(zhì)量?jī)?yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量?jī)?yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
解析:熟記常見(jiàn)幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪廓線.在得出原立體圖形的形狀后,也可以反過(guò)來(lái)想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
5.游戲活動(dòng):每人從信封袋中挑選一個(gè)自己最喜歡的分?jǐn)?shù)卡片。(1)最簡(jiǎn)分?jǐn)?shù)上講臺(tái),和最簡(jiǎn)分?jǐn)?shù)相同的分?jǐn)?shù)起立。聯(lián)系生活實(shí)際發(fā)散性思考。(2)從剩下的同學(xué)中找到自己的好朋友。幫最后兩名同學(xué)找最簡(jiǎn)分?jǐn)?shù)作朋友。判斷并說(shuō)明理由。按要求參加活動(dòng),綜合考核學(xué)生判斷最簡(jiǎn)分?jǐn)?shù)和對(duì)分?jǐn)?shù)進(jìn)行約分的能力。創(chuàng)設(shè)生活情景,提供了一些現(xiàn)實(shí)的學(xué)習(xí)材料,把書本知識(shí)與學(xué)生的日常生活聯(lián)系起來(lái),使學(xué)生感受到數(shù)學(xué)來(lái)自生活,并不抽象;學(xué)好數(shù)學(xué),為生活、生產(chǎn)服務(wù),學(xué)數(shù)學(xué)真有價(jià)值。部分題目設(shè)計(jì)充滿趣味性,把孩子拉入游戲之中,鞏固本課的所有知識(shí)點(diǎn)。在引導(dǎo)學(xué)生積極觀察、思考、聯(lián)想、誘發(fā)學(xué)生的創(chuàng)新因素時(shí),更應(yīng)注意引導(dǎo)學(xué)生克服固定的思維模式,鼓勵(lì)創(chuàng)造性地發(fā)現(xiàn)知識(shí)的規(guī)律和發(fā)表自己的獨(dú)特見(jiàn)解。
一、教材分析《3的倍數(shù)的特征》是人教版實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)第19頁(yè)的內(nèi)容,它是在因數(shù)和倍數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的,是求最大公因數(shù)、最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通分的必要前提。因此,使學(xué)生熟練地掌握2、5、3的倍數(shù)的特征,具有十分重要的意義。教材的安排是先教學(xué)2、5的倍數(shù)的特征,再教學(xué)3的倍數(shù)的特征。因?yàn)?、5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判定,必須把其各位上的數(shù)相加,看所得的和是否是3的倍數(shù)來(lái)判定,學(xué)生理解起來(lái)有一定的困難,因此,本課的教學(xué)目標(biāo),我從知識(shí)、能力、情感三方面綜合考慮,確定教學(xué)目標(biāo)如下:1、使學(xué)生通過(guò)理解和掌握3的倍數(shù)的特征,并且能熟練地去判斷一個(gè)數(shù)是否是3的倍數(shù),以培養(yǎng)學(xué)生觀察、分析、動(dòng)手操作及概括問(wèn)題的能力,進(jìn)一步發(fā)展學(xué)生的數(shù)感。
不足之處是: 1 、在如何有效地組織學(xué)生開展探索規(guī)律時(shí),我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢(shì)利導(dǎo)。在開展探索規(guī)律時(shí),我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在 “亂猜 ”。這說(shuō)明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時(shí)需要考慮的問(wèn)題。 2 、總怕學(xué)生在這節(jié)課里不能很好的接受知識(shí),所以在個(gè)別應(yīng)放手的地方卻還在牽著學(xué)生走。總結(jié)性的語(yǔ)言也顯得有些羅嗦。 3 、課堂上學(xué)生參與學(xué)習(xí)的程度差異很明顯的:一部分學(xué)生爭(zhēng)先恐后地應(yīng)答,表現(xiàn)得很出眾,很活躍;但更多的學(xué)生或缺乏勇氣,或不善言辭,或沒(méi)有機(jī)會(huì),而淪為聽(tīng)眾或觀眾。 4 、本節(jié)課在教學(xué)評(píng)價(jià)方式上略顯單一。對(duì)學(xué)生的評(píng)價(jià)少,激勵(lì)性的語(yǔ)言不夠。
尊敬的各位評(píng)委、各位老師,大家好,今天我說(shuō)課的內(nèi)容是《萬(wàn)里一線牽》。下面我將從“說(shuō)教材”、“說(shuō)學(xué)情”、“說(shuō)教法”、“說(shuō)程序”、“說(shuō)板書”五個(gè)方面對(duì)本課進(jìn)行具體研說(shuō),懇請(qǐng)大家批評(píng)指正。一、依標(biāo)扣本,說(shuō)教材《萬(wàn)里一線牽》是部編版《道德與法治》三年級(jí)下冊(cè)第四單元《多樣的交通和通信》的第三個(gè)主題中的內(nèi)容。這個(gè)主題主要是了解多樣便捷的現(xiàn)代通信方式;通過(guò)古今通信方式的對(duì)比,感受通信發(fā)展給人們帶來(lái)的便利。本課教學(xué)通過(guò)幫助學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和調(diào)查資料相對(duì)比,通過(guò)對(duì)知識(shí)的探究發(fā)現(xiàn)問(wèn)題,從而使學(xué)生對(duì)現(xiàn)代通信方式的發(fā)展有初步了解,知道多種多樣的現(xiàn)代通信方式,以及通信方式的發(fā)展給人們生活帶來(lái)的便利。 二、以人為本,說(shuō)學(xué)情對(duì)于現(xiàn)代通信方式,小學(xué)生使用的已經(jīng)很廣泛了,但是小學(xué)生真正運(yùn)用現(xiàn)代通信方式解決生活問(wèn)題的經(jīng)驗(yàn)不足、缺乏體驗(yàn),對(duì)本知識(shí)點(diǎn)的了解很少。因此,依據(jù)學(xué)生的生活實(shí)際和本課的教學(xué)目標(biāo),我以學(xué)生的生活實(shí)際為起點(diǎn),利用課程資源,使教學(xué)與學(xué)生生活貼得更近,讓學(xué)生更好的感受現(xiàn)代通信的迅猛發(fā)展,以及給生活帶來(lái)的無(wú)限便捷,體驗(yàn)通信愉悅,并在以后的生活中學(xué)會(huì)合理運(yùn)用通信方式解決實(shí)際問(wèn)題,更好地服務(wù)于當(dāng)下和未來(lái)的生活。