學科數學 課 題 1.4 充要條件班級 人數 授課時數 2 課 型 新授課 周次 授課時間 教 學 目 的 知識目標:了解“充分條件”、“必要條件”及“充要條件” 能力目標:培養(yǎng)學生的分析問題能力解決問題的能力. 情感目標:通過師生互動,學生之間的討論分析,加強合作意識。 教學重點“充分條件”、“必要條件”及“充要條件”.教學難點符號“”,“”,“”的正確使用. 教 具 教 后 小 結 學生是否真正理解有關知識; 是否能利用知識、技能解決問題; 在知識、技能的掌握上存在哪些問題。
【教學目標】1、了解方程、不等式、函數的圖像之間的聯系;2、掌握一元二次不等式的圖像解法;【教學重點】1、 方程、不等式、函數的圖像之間的聯系;2、 一元二次不等式的解法?!窘虒W難點】 一元二次不等式的解法。【教學設計】 1、從復習一次函數圖像、一元一次方程、一元一次不等式的聯系入手;2、類比觀察一元二次函數圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習,培養(yǎng)學生的數學思維能力?!菊n時安排】 2課時(90分鐘)【教學過程】一、一元二次不等式的解法² 復習回顧1、根據初中所學知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數y=x²-5x+6的圖像,回答下列問題:(1)當y=0時,x取什么值?(2)二次函數y=x²-5x+6的圖像與x軸交點的坐標是什么?(3)當y<0時,x的取值范圍是什么?總結:由此看到,通過對函數y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
【教學目標】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數形結合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學習,學會運用變量替換的方法,從而提升計算技能?!窘虒W重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學難點】 利用變量替換解不等式或.【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖 *回顧思考 復習導入 問題 任意實數的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數,有 其幾何意義是:數軸上表示實數的點到原點的距離. 拓展 不等式和的解集在數軸上如何表示? 根據絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結 引導 分析 了解 思考 回答 觀察 領會 復習 相關 知識 點為 進一 步學 習做 準備 充分 借助 圖像 進行 分析
課程:數學課題: 3.1.1函數的概念課型:講授課課時:2課時授課班級:2015級南口班授課時間:2016年3月1日授課地點:南口校區(qū)教 學 目 標知識目標1.能用函數語言描述圖像、解析式中自變量與函數值的依賴關系; 2.會計算函數的定義域,理解值域的含義 3.會用語言表述自變量與函數值間的對應關系能力目標通過對實例的分析,培養(yǎng)學生的觀察能力,抽象概括及邏輯思維能力 通過計算函數的定義域,培養(yǎng)學生的計算能力素養(yǎng)目標函數概念的思想蘊含了很多數學思維,也滲透生活中及其他學科范圍內,通過學習使學生認同函數的抽象性。教學重 點理解函數的概念教學難 點判斷兩個函數是否相同教學方 法引導啟發(fā),講練結合教學資 源演示文稿板 書 設 計3.1函數的概念 設集合A、B為非空數集,對于確定的對 應法則f下,在集合A中取定任意一個數x, 在集合B中都有唯一確定的數f(x)與之相 對應,則稱f:A→B為集合A到集合B的一 個函數. 記作:y=f(x),x∈A X叫自變量,y叫函數值,集合A叫函數的 定義域,所有函數值組成的集合叫值域。
【教學目標】知識目標:⑴ 理解函數的單調性與奇偶性的概念;⑵ 會借助于函數圖像討論函數的單調性;⑶理解具有奇偶性的函數的圖像特征,會判斷簡單函數的奇偶性.能力目標:⑴ 通過利用函數圖像研究函數性質,培養(yǎng)學生的觀察能力;⑵ 通過函數奇偶性的判斷,培養(yǎng)學生的數學思維能力.【教學重點】⑴ 函數單調性與奇偶性的概念及其圖像特征;⑵ 簡單函數奇偶性的判定.【教學難點】函數奇偶性的判斷.(*函數單調性的判斷)【教學設計】(1)用學生熟悉的主題活動將所學的知識有機的整合在一起;(2)引導學生去感知數學的數形結合思想.通過圖形認識特征,由此定義性質,再利用圖形(或定義)進行性質的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學生的思維能力.【教學備品】教學課件.【課時安排】3課時.(90分鐘)【教學過程】
教學內容4.4.1 對數函數及其圖像與性質教學時間 (不超過3課時)2課時授課類型新授課班級 日期 教學目標知識目標:掌握對數函數的概念,圖象和性質,并會簡單的應用.能力目標:觀察對數函數的圖像,總結對數函數的性質,培養(yǎng)觀察能力.情感目標:)體味對數函數的認知過程,樹立嚴謹的思維習慣.教學重點對數函數的圖像及性質.教學難點對數函數圖象和性質的發(fā)現過程,培養(yǎng)數形結合的思想.教法學法這節(jié)課主要采用啟發(fā)式和引導發(fā)現式的教學方法。⑴ 實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結合,有助于觀察得到指數函數的性質; ⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;通過教師在教學過程中的點撥,啟發(fā)學生通過主動觀察、主動思考、動手操作、自主探究來達到對知識的發(fā)現和接受.課前準備1.備教材、備學生 2.PPT課件 3.五環(huán)四步教學模式教案教 學 過 程環(huán)節(jié)教師活動師生活動預期效果一環(huán) 學情 動員某種物質的細胞分裂,由1個分裂成2個,2個分裂成4個,……,那么,知道分裂得到的細胞個數如何求得分裂次數呢? 設1個細胞經過y次分裂后得到x個細胞,則x與y的函數關系是,寫成對數式為,此時自變量x位于真數位置.師:根據式,給定一個x值(經過的次數),就能計算出唯一的函數值y.實際上,在這個問題中知道的是y的值,要求的是對應的x值.所以用對數形式表示, 通常我們用x表示自變量,用y表示因變量, 易于學生想象領會函數意義二環(huán)問題 診斷一般地,形如的函數叫以為底的對數函數,其中a>0且a≠1.對數函數的定義域為,值域為R. 例如、、都是對數函數. 教師引導學生聯系上面“情景問題”的表達式,請同學們思考討論對數函數的概念. 師:(1) 為什么規(guī)定 a>0且 a≠1? (2) 為什么對數函數的定義域是(0,+∞)? 指導體會對數函數的特點。讓學生牢記底數大于零且不等于1,真數大于零.
課題名稱4.1實數指數冪授課班級 授課時間13機電1課題序號 授課課時第 到 授課形式啟發(fā)、類比使用教具課件教學目的1.識記n次方根的概念,能區(qū)分奇次方根、偶次方根和n次根算式根。 2.能描述分數指數冪的定義,會進行根式與分數指數冪的互化。 3.識記有理數指數冪的運算性質,會進行簡單的有理數指數冪的運算。教學重點有理數指數冪的運算、實數指數冪的綜合運算教學難點有理數指數冪的運算、實數指數冪的綜合運算更新、補 充、刪減 內容無課外作業(yè) 1.P 96 習題。 授課主要內容或板書設計實數指數冪 概念 思考交流 例題 課堂小結 問題解決 練習 教學后記
【教學目標】知識目標:⑴ 理解指數函數的圖像及性質;⑵ 了解指數模型,了解指數函數的應用.能力目標:⑴ 會畫出指數函數的簡圖;⑵ 會判斷指數函數的單調性;⑶了解指數函數在生活生產中的部分應用,從而培養(yǎng)學生分析與解決問題能力.【教學重點】⑴ 指數函數的概念、圖像和性質;⑵ 指數函數的應用實例.【教學難點】指數函數的應用實例.【教學設計】⑴ 以實例引入知識,提升學生的求知欲;⑵ “描點法”作圖與軟件的應用相結合,有助于觀察得到指數函數的性質;⑶知識的鞏固與練習,培養(yǎng)學生的思維能力;⑷實際問題的解決,培養(yǎng)學生分析與解決問題的能力;⑸以小組的形式進行討論、探究、交流,培養(yǎng)團隊精神.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 4.2指數函數. *創(chuàng)設情景 興趣導入 問題 某種物質的細胞分裂,由1個分裂成2個,2個分裂成4個,4個分裂成8個,……,知道分裂的次數,如何求得細胞的個數呢? 解決 設細胞分裂次得到的細胞個數為,則列表如下: 分裂次數x123…x…細胞個數y2=4=8=…… 由此得到, . 歸納 函數中,指數x為自變量,底2為常數. 介紹 播放 課件 質疑 引導 分析 了解 觀看 課件 思考 領悟 導入 實例 比較 易于 學生 想象 歸納 領會 函數 的變 化意 義 5
課 程數學章節(jié)內容 課程類型新課課時安排2課時指導教師 日期12月 7 日學習目標掌握用弧度表示角度的大小學習重點掌握用弧度表示角的方法學習難點弧度制和角度制的互換回顧(溫故知新)1、回顧上節(jié)課所學內容:任意角度的推廣、終邊相等的角的表示方法; 2、已經學過角度的計量單位:度,度分秒是如何換算的; 3、圓的周長公式和扇形弧長公式。問題(順著問題找思路)1、弧度制:等于半徑長的圓弧所對的圓心角叫做__________,記作____弧度或1________。 2、正角的弧度為_____數,負角的弧度為_____數,零角的弧度為零。 3、由弧度的定義可知,當角α用弧度來表示,其絕對值|α|和圓弧長l與圓的半徑r有:|α|=________。 4、一個圓的周長為_____,所以一周角(360°)的弧度為_______=______(rad) 。 5、360°=_____(rad); 180°=_______(rad); 思考如何將角度制轉化為弧度制?如何將弧度制轉化為角度制?(結合實例講解)練習(通過練習固要點)1、練習5.2.1; 2、例3;展示(通過展示強能力)(25分鐘)(包括學生展示回顧、問題、練習、小組總結等部分)1、引導各小組展示學習成果,在有各小組長指定小組成員展示,結束后,該組組長須總結或指定其他成員進行總結。 2、展示過程中,提醒同學注意老師的板書,或者請老師進行總結,或題目的講解。
創(chuàng)設情景 興趣導入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復出現.推廣類似這樣的周期現象還有哪些? 動腦思考 探索新知概念 對于函數,如果存在一個不為零的常數,當取定義域內的每一個值時,都有,并且等式成立,那么,函數叫做周期函數,常數叫做這個函數的一個周期. 由于正弦函數的定義域是實數集R,對,恒有,并且,因此正弦函數是周期函數,并且 ,, ,及,,都是它的周期.通常把周期中最小的正數叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數周期,都是指最小正周期.因此,正弦函數的周期是.
教學目標:知識與能力目標:1.能夠借助三角函數的定義及單位圓推導出三角函數的誘導公式 2.能夠運用誘導公式,把任意角的三角函數的化簡、求值問題轉化為銳角的三角函數的化簡、求值問題情感目標:1.通過誘導公式的探求,培養(yǎng)學生的探索能力、鉆研精神和科學態(tài)度 2.通過誘導公式探求工程中的合作學習,培養(yǎng)學生團結協作的精神; 3. 通過誘導公式的運用,培養(yǎng)學生的劃歸能力,提高學生分析問題和解決問題的能力。 一導入:二、自學(閱讀教材第110---112頁,回答下列問題) 在直角坐標系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關于軸的對稱點的特征: 。對于角而言:角關于軸對稱的角為_______公式二:__________ _________ _________
【教學目標】知識目標:(1)掌握利用計算器求角度的方法;(2)了解已知三角函數值,求指定范圍內的角的方法.能力目標:(1)會利用計算器求角;(2)已知三角函數值會求指定范圍內的角;(3)培養(yǎng)使用計算工具的技能.【教學重點】已知三角函數值,利用計算器求角;利用誘導公式求出指定范圍內的角.【教學難點】已知三角函數值,利用計算器求指定范圍內的角.【教學設計】(1)精講已知正弦值求角作為學習突破口;(2)將余弦、正切的情況作類比讓學生小組討論,獨立認知學習;(3)在練習——討論中深化、鞏固知識,培養(yǎng)能力;(4)在反思交流中,總結知識,品味學習方法.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 5.7已知三角函數值求角 *構建問題探尋解決 問題 已知一個角,利用計算器可以求出它的三角函數值, 利用計算器,求= (精確到0.0001): 反過來,已知一個角的三角函數值,如何求出相應的角? 解決 準備計算器.觀察計算器上的按鍵并閱讀相關的使用說明書.小組內總結學習已知三角函數值,利用計算器求出相應的角的方法. 利用計算器求出x:,則x= 歸納 計算器的標準設定中,已知正弦函數值,只能顯示出?90°~ 90°(或)之間的角. 介紹 質疑 提問 引導 說明 了解 思考 動手 操作 探究 利用 問題 引起 學生 的好 奇心 并激 發(fā)其 獨立 尋求 計算 器操 作的 欲望 10
教學目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉化。2. 會根據三視圖描述原幾何體。教學重點:掌握直棱柱的三視圖的畫法。能根據三視圖描述原幾何體。教學難點:幾何體與視圖之間的相互轉化。培養(yǎng)空間想像觀念。課型:新授課教學方法:觀察實踐法一、實物觀察、空間想像觀察:請同學們拿出事先準備好的直三棱柱、直四棱柱,根據你所擺放的位置經過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談談你的看法。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
四、范例學習、理解領會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學生畫圖、 實驗、觀察、探索。五、隨堂練習課本隨堂練習 學生觀察、畫圖、合作交流。六、課堂總結本節(jié)課通過各種實踐活動,促進大家對內容的理解,本課內容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.
探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
(4)議一議:頻率與概率有什么區(qū)別和聯系?隨著重復實驗次數的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農場里出生了1頭白色的小奶牛,據統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設計意圖】運用小組合作交流的方式,既培養(yǎng)了學生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學習比較吃力的同學也能參與到學習中來,體現了學生是學習的主體。
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質.從教學樓到圖書館,總有少數同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(1)中的計算過程和結果,設AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現的規(guī)律.
(1)請你用代數式表示水渠的橫斷面面積;(2)計算當a=3,b=1時,水渠的橫斷面面積.解析:(1)根據梯形面積=12(上底+下底)×高,即可用含有a、b的代數式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數式中,其結果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結:解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設計教學過程中,應通過活動使學生感知代數式運算在判斷和推理上的意義,增強學生學習數學的興趣,培養(yǎng)學生積極的情感和態(tài)度,為進一步學習奠定堅實的基礎.