解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過(guò)求解不等式確定最值,求最值時(shí)要注意自變量的取值范圍.解:設(shè)購(gòu)進(jìn)A種樹(shù)苗x棵,則購(gòu)進(jìn)B種樹(shù)苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購(gòu)進(jìn)A種樹(shù)苗10棵,B種樹(shù)苗7棵;(2)由題意得17-x172,所需費(fèi)用為80x+60(17-x)=20x+1020(元),費(fèi)用最省需x取最小整數(shù)9,此時(shí)17-x=17-9=8,此時(shí)所需費(fèi)用為20×9+1020=1200(元).答:購(gòu)買9棵A種樹(shù)苗,8棵B種樹(shù)苗的費(fèi)用最省,此方案所需費(fèi)用1200元.三、板書(shū)設(shè)計(jì)一元一次不等式與一次函數(shù)關(guān)系的實(shí)際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時(shí)結(jié)合生活中的實(shí)例組織學(xué)生進(jìn)行探索,在探索的過(guò)程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問(wèn)題的能力,從新課到練習(xí)都充分調(diào)動(dòng)了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對(duì)應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問(wèn)題轉(zhuǎn)化為求函數(shù)問(wèn)題,培養(yǎng)自己利用數(shù)學(xué)知識(shí)解答實(shí)際問(wèn)題的能力.三、板書(shū)設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長(zhǎng)AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開(kāi)口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長(zhǎng)有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來(lái)解.三、板書(shū)設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺(tái),還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),使課堂真正成為學(xué)生展示自我的舞臺(tái).充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問(wèn)題、解決問(wèn)題的獨(dú)到見(jiàn)解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過(guò)y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開(kāi)口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)等)是解決問(wèn)題的關(guān)鍵.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
知識(shí)和技能 1.了解人類活動(dòng)對(duì)生物圈影響的幾個(gè)方面的實(shí)例。 2.掌握環(huán)境污染的產(chǎn)生及危害。 3.舉例說(shuō)明人類對(duì)生物圈中資源的合理利用。 過(guò)程與方法 1.能初步學(xué)會(huì)收集資料,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,能夠運(yùn)用所學(xué)知識(shí)、技能分析和解決一些身邊的生物學(xué)問(wèn)題的能力。 2.培養(yǎng)學(xué)生初步具有近一步獲取課本以外的生物學(xué)信息的能力。 情感、態(tài)度與價(jià)值觀 1.讓學(xué)生認(rèn)識(shí)到環(huán)境保護(hù)的重要性,能夠以科學(xué)的態(tài)度去認(rèn)識(shí)生命世界,認(rèn)同人類活動(dòng)對(duì)生物圈的影響,形成環(huán)境保護(hù)意識(shí),并使這種意識(shí)轉(zhuǎn)變成真正的行動(dòng),培養(yǎng)學(xué)生保護(hù)環(huán)境的意識(shí),增強(qiáng)愛(ài)國(guó)主義思想1.認(rèn)同人類活動(dòng)對(duì)生物圈的影響,形成環(huán)境保護(hù)意識(shí) 2.做到從實(shí)際行動(dòng)出發(fā)保護(hù)環(huán)境1.采取讓學(xué)生收集資料,整理資料,解疑
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫(xiě)英文字母,印刷用黑體表示,記作a;手寫(xiě)時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒(méi)有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來(lái)表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來(lái)表示向量.線段箭頭的指向表示向量的方向,線段的長(zhǎng)度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫(xiě)英文字母,印刷用黑體表示,記作a;手寫(xiě)時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)兩條直線的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時(shí),“同位角相等”是“這兩條直線平行”的充要條件. 【問(wèn)題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動(dòng)腦思考 探索新知 【新知識(shí)】 當(dāng)兩條直線、的斜率都存在且都不為0時(shí)(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過(guò)來(lái),如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當(dāng)直線、的斜率都是0時(shí)(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當(dāng)兩條直線、的斜率都不存在時(shí)(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當(dāng)直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時(shí),兩條直線相交. 由上面的討論知,當(dāng)直線、的斜率都存在時(shí),設(shè),,則 兩個(gè)方程的系數(shù)關(guān)系兩條直線的位置關(guān)系相交平行重合 當(dāng)兩條直線的斜率都存在時(shí),就可以利用兩條直線的斜率及直線在y軸上的截距,來(lái)判斷兩直線的位置關(guān)系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個(gè)不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質(zhì) *創(chuàng)設(shè)情境 興趣導(dǎo)入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個(gè)平面內(nèi). 圖9?13 觀察教室中的物體,你能否抽象出這種位置關(guān)系的兩條直線? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 2*動(dòng)腦思考 探索新知 在同一個(gè)平面內(nèi)的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個(gè)平面內(nèi)的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關(guān)系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時(shí)兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請(qǐng)畫(huà)出實(shí)物圖) 受實(shí)驗(yàn)的啟發(fā),我們可以利用平面做襯托,畫(huà)出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書(shū)本,演示圖9?15(2)的異面直線位置關(guān)系. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 5
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設(shè)情境 興趣導(dǎo)入 在圖9?30所示的長(zhǎng)方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點(diǎn)P,過(guò)點(diǎn)P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 0 5*動(dòng)腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經(jīng)過(guò)空間任意一點(diǎn)分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡(jiǎn)便,經(jīng)常取一條直線與過(guò)另一條直線的平面的交點(diǎn)作為點(diǎn)(如圖9?31(2)) (1) 圖9-31(2) 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 12*鞏固知識(shí) 典型例題 例1 如圖9?32所示的長(zhǎng)方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因?yàn)?∥,所以為異面直線與所成的角.即所求角為. (2)因?yàn)椤危詾楫惷嬷本€與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說(shuō)明 強(qiáng)調(diào) 引領(lǐng) 講解 說(shuō)明 觀察 思考 主動(dòng) 求解 通過(guò)例題進(jìn)一步領(lǐng)會(huì) 17
解析:先利用正比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)1<x<2時(shí),直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點(diǎn)坐標(biāo)為(1,2),∴當(dāng)x>1時(shí),2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過(guò)點(diǎn)B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結(jié):本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合.三、板書(shū)設(shè)計(jì)1.通過(guò)函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關(guān)系本課時(shí)主要是掌握運(yùn)用一次函數(shù)的圖象解一元一次不等式,在教學(xué)過(guò)程中采用講練結(jié)合的方法,讓學(xué)生充分參與到教學(xué)活動(dòng)中,主動(dòng)、自主的學(xué)習(xí).
這幾段內(nèi)容傳達(dá)出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,愛(ài)護(hù)大自然”的主旨內(nèi)涵,因此讓學(xué)生通過(guò)自由朗讀的方式,再次體會(huì)馮至對(duì)這個(gè)消逝了的山村的細(xì)致的美好的描繪,感悟馮至傳達(dá)出的對(duì)生命,對(duì)自然的理解和思考。5.最后一個(gè)自然段的解讀依然是交給學(xué)生,先齊讀課文,再讓學(xué)生自主分享自己的體會(huì)或疑惑。但在這一環(huán)節(jié)我也設(shè)計(jì)了兩個(gè)我認(rèn)為必須解答的兩個(gè)問(wèn)題,一是怎么理解“在風(fēng)雨如晦的時(shí)刻”;二是“意味不盡的關(guān)聯(lián)”是指什么。我認(rèn)為這兩個(gè)問(wèn)題一個(gè)涉及到寫(xiě)作背景,一個(gè)涉及到對(duì)全文主旨的一個(gè)整體把握,能夠進(jìn)一步幫助學(xué)生理解散文的深刻內(nèi)涵和主旨,讓學(xué)生有意識(shí)的在閱讀散文過(guò)程中通過(guò)背景知識(shí)進(jìn)行理解。既尊重學(xué)生的個(gè)性化解讀,又能夠讓學(xué)生有意義學(xué)習(xí),完成預(yù)設(shè)的教學(xué)目標(biāo)。如果學(xué)生沒(méi)有提到這兩處,那我就需要做出補(bǔ)充。
一.說(shuō)教材我今天說(shuō)課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)北師大版七年級(jí)下冊(cè)第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學(xué)習(xí)中學(xué)生已通過(guò)分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語(yǔ)言加以描述,初步具有了有條理的思考和表達(dá)的能力,為本節(jié)的深入學(xué)習(xí)奠定了基礎(chǔ)。二.說(shuō)教學(xué)目標(biāo)本節(jié)課根據(jù)新的教學(xué)理念和學(xué)生需要掌握的知識(shí),確立本節(jié)課的三種教學(xué)目標(biāo):知識(shí)與能力目標(biāo):根據(jù)具體情況,能用適當(dāng)?shù)暮瘮?shù)表示方法刻畫(huà)簡(jiǎn)單實(shí)際問(wèn)題中變量之間的關(guān)系,能確定簡(jiǎn)單實(shí)際問(wèn)題中函數(shù)自變量的取值范圍,并會(huì)求函數(shù)值。過(guò)程與方法目標(biāo):經(jīng)歷探索某些圖形中變量之間的關(guān)系的過(guò)程,進(jìn)一步體會(huì)一個(gè)變量對(duì)另一個(gè)變量的影響,發(fā)展符號(hào)感。情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)研究,學(xué)習(xí)培養(yǎng)抽象思維能力和概括能力,通過(guò)對(duì)自變量和因變量關(guān)系的表達(dá),培養(yǎng)數(shù)學(xué)建模能力,增強(qiáng)應(yīng)用意識(shí)。
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
1.使學(xué)生掌握用描點(diǎn)法畫(huà)出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過(guò)配方確定拋物線的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過(guò)程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫(huà)出二次函數(shù)y=ax2+bx+c的圖象和通過(guò)配方確定拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問(wèn)題1.你能說(shuō)出函數(shù)y=-4(x-2)2+1圖象的開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開(kāi)口向下,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)
【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過(guò)學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫(huà)y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫(huà)y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡(jiǎn)單的二次函數(shù)y=x2入手去研究
雨后天空的彩虹、河上架起的拱橋等都會(huì)形成一條曲線.問(wèn)題1:這些曲線能否用函數(shù)關(guān)系式表示?問(wèn)題2:如何畫(huà)出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫(huà)法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫(huà)出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說(shuō)出拋物線(1)(2)的對(duì)稱軸、頂點(diǎn)坐標(biāo)、開(kāi)口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對(duì)稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫(huà)拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對(duì)稱性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對(duì)稱性畫(huà)另一側(cè).
尊敬的各位評(píng)委老師: 你們好!我說(shuō)課的內(nèi)容是義務(wù)教育教科書(shū)人教版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第一單元第5-6頁(yè)的內(nèi)容《乘除法的意義和各部分間的關(guān)系》。下面我談?wù)劚竟?jié)課的教學(xué)設(shè)想,不妥之處,懇請(qǐng)各位教師指正。一.我對(duì)教材的理解(教材分析)——參考教學(xué)參考書(shū)《乘除法的意義和各部分間的關(guān)系》是人教版小學(xué)四年級(jí)下冊(cè)第一單元四則運(yùn)算中第2課時(shí)的教學(xué)內(nèi)容。本課是在學(xué)生對(duì)整數(shù)乘除法有了較多的接觸,積累了豐富的感性認(rèn)識(shí)并掌握了相應(yīng)的基礎(chǔ)知識(shí)和技能的基礎(chǔ)上進(jìn)行抽象、概括,上升到理性的認(rèn)識(shí)。為后面學(xué)習(xí)的四則運(yùn)算打基礎(chǔ),也為以后學(xué)習(xí)小數(shù)、分?jǐn)?shù)的意義和關(guān)系做鋪墊。二.學(xué)情分析(根據(jù)考評(píng)要求,可不說(shuō))因?yàn)槟挲g特征決定了四年級(jí)學(xué)生活潑好奇好動(dòng),雖具一定的抽象思維能力,但仍然以形象思維為主;就知識(shí)層面上,已經(jīng)學(xué)習(xí)了簡(jiǎn)單整數(shù)乘除法,對(duì)整數(shù)乘除法及各部分名稱有初步的感性認(rèn)知,初步具備了理性認(rèn)知學(xué)習(xí)的基礎(chǔ);同時(shí)又存在個(gè)體差異,多數(shù)學(xué)生思維活躍,數(shù)學(xué)興趣濃厚,表現(xiàn)欲望強(qiáng)烈,少數(shù)學(xué)生缺乏積極性,學(xué)習(xí)被動(dòng)。
一、教材分析《3的倍數(shù)的特征》是人教版實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)第19頁(yè)的內(nèi)容,它是在因數(shù)和倍數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的,是求最大公因數(shù)、最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通分的必要前提。因此,使學(xué)生熟練地掌握2、5、3的倍數(shù)的特征,具有十分重要的意義。教材的安排是先教學(xué)2、5的倍數(shù)的特征,再教學(xué)3的倍數(shù)的特征。因?yàn)?、5的倍數(shù)的特征僅僅體現(xiàn)在個(gè)位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來(lái)判定,必須把其各位上的數(shù)相加,看所得的和是否是3的倍數(shù)來(lái)判定,學(xué)生理解起來(lái)有一定的困難,因此,本課的教學(xué)目標(biāo),我從知識(shí)、能力、情感三方面綜合考慮,確定教學(xué)目標(biāo)如下:1、使學(xué)生通過(guò)理解和掌握3的倍數(shù)的特征,并且能熟練地去判斷一個(gè)數(shù)是否是3的倍數(shù),以培養(yǎng)學(xué)生觀察、分析、動(dòng)手操作及概括問(wèn)題的能力,進(jìn)一步發(fā)展學(xué)生的數(shù)感。
不足之處是: 1 、在如何有效地組織學(xué)生開(kāi)展探索規(guī)律時(shí),我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢(shì)利導(dǎo)。在開(kāi)展探索規(guī)律時(shí),我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在 “亂猜 ”。這說(shuō)明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時(shí)需要考慮的問(wèn)題。 2 、總怕學(xué)生在這節(jié)課里不能很好的接受知識(shí),所以在個(gè)別應(yīng)放手的地方卻還在牽著學(xué)生走。總結(jié)性的語(yǔ)言也顯得有些羅嗦。 3 、課堂上學(xué)生參與學(xué)習(xí)的程度差異很明顯的:一部分學(xué)生爭(zhēng)先恐后地應(yīng)答,表現(xiàn)得很出眾,很活躍;但更多的學(xué)生或缺乏勇氣,或不善言辭,或沒(méi)有機(jī)會(huì),而淪為聽(tīng)眾或觀眾。 4 、本節(jié)課在教學(xué)評(píng)價(jià)方式上略顯單一。對(duì)學(xué)生的評(píng)價(jià)少,激勵(lì)性的語(yǔ)言不夠。