問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時(shí),轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點(diǎn)與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點(diǎn)A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點(diǎn)A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
(8)物價(jià)部門規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過200萬元,請你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價(jià)黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識,通過數(shù)值計(jì)算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時(shí),最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
教學(xué)追記:本節(jié)課的內(nèi)容相對而言較容易掌握,因而學(xué)生在學(xué)習(xí)中并沒有出現(xiàn)什么困難。教學(xué)中,我兩種方法并重,并讓學(xué)生理解兩種方法的殊途同歸之處。對于類型稍有不同的題目,如“做一做”第2題,以人數(shù)為比例進(jìn)行分配的,我在教學(xué)時(shí)添加了一道例題,教學(xué)后再讓學(xué)生獨(dú)力完成第2題,這樣的教學(xué)讓學(xué)生學(xué)得較為輕松,也對這種類型題掌握得較扎實(shí)。4、整理和復(fù)習(xí)整理復(fù)習(xí)(1)復(fù)習(xí)目標(biāo):使學(xué)生進(jìn)一步掌握本章所學(xué)的基本概念和計(jì)算法則,提高學(xué)生的計(jì)算能力和解題能力。復(fù)習(xí)重點(diǎn):分?jǐn)?shù)除法的計(jì)算方法,化簡比。復(fù)習(xí)難點(diǎn):正確計(jì)算分?jǐn)?shù)除法。復(fù)習(xí)過程:一、復(fù)習(xí)分?jǐn)?shù)除法的意義和計(jì)算法則1、這一章我們學(xué)習(xí)了分?jǐn)?shù)除法的有關(guān)知識.請大家回憶一下分?jǐn)?shù)除法有幾種類型?(1)分?jǐn)?shù)除以整數(shù),例如 ÷5;(2)一個數(shù)除以分?jǐn)?shù),它又包括整數(shù)除以分?jǐn)?shù),例如20÷ ;和分?jǐn)?shù)除以分?jǐn)?shù),例如÷ 。(3)做第52頁“整理和復(fù)習(xí)”的第2題。2、分?jǐn)?shù)除法的意義
2、試做例題,掌握轉(zhuǎn)化方法明確轉(zhuǎn)化原理后,讓學(xué)生試算例題。在試做的基礎(chǔ)上引導(dǎo)學(xué)生進(jìn)行觀察比較,抽象出轉(zhuǎn)化時(shí)小數(shù)點(diǎn)的移位方法,最后概括總結(jié)出移位的法則。具體做法如下:1、我認(rèn)為小數(shù)除法如果按照教材按部就班教學(xué)有點(diǎn)不合理的,不利于學(xué)生從整體上把握小數(shù)除法,不利于學(xué)生對知識的建構(gòu)。因此,我選擇了重組教材。(把例5例6有機(jī)的結(jié)合在一起的同時(shí)也新增加了一個例題,那就是被除數(shù)小數(shù)位數(shù)比除數(shù)的小數(shù)位數(shù)多)。例5、例6和新增加例題的教學(xué),引導(dǎo)學(xué)生概括總結(jié)出轉(zhuǎn)化時(shí)移位的方法,同時(shí)在此基礎(chǔ)上歸納出除數(shù)是小數(shù)的除法計(jì)算法則。在得出計(jì)算法則后,還要注意強(qiáng)調(diào):(1)小數(shù)點(diǎn)向右移動的位數(shù)取決于除數(shù)的小數(shù)位數(shù),而不由被除數(shù)的小數(shù)位數(shù)確定。(2)整數(shù)除法中,兩個數(shù)相除的商不會大于被除數(shù),而在小數(shù)除法中,當(dāng)除數(shù)小于1時(shí),商反而比被除數(shù)大。
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來解.三、板書設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實(shí)際問題的能力.三、板書設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點(diǎn)坐標(biāo)、開口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對稱性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(diǎn)(0,c),∴兩個函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點(diǎn)坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
三維目標(biāo)1.知識與技能(1)讓學(xué)生經(jīng)歷用7、8、9的乘法口訣求商的過程,掌握用乘法口訣求商的一般方法。(2)使學(xué)生會綜合應(yīng)用乘、除法運(yùn)算解決簡單的或稍復(fù)雜的實(shí)際問題。2.過程與方法在解決問題的過程中,讓學(xué)生初步嘗試運(yùn)用分析、推理和轉(zhuǎn)化的學(xué)習(xí)方法。3.情感、態(tài)度與價(jià)值觀讓學(xué)生在學(xué)習(xí)中體驗(yàn)到成功的喜悅,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的信心。重、難點(diǎn)與關(guān)鍵1.重點(diǎn):使學(xué)生熟練應(yīng)用乘法口訣求商,經(jīng)歷從實(shí)際問題中抽象出一個數(shù)是另一個數(shù)的幾倍的數(shù)量關(guān)系的過程,會用乘法口訣求商的技能解決實(shí)際問題。2.難點(diǎn):應(yīng)用分析推理將一個數(shù)是另一個數(shù)的幾倍是多少的數(shù)量關(guān)系轉(zhuǎn)化為一個數(shù)里面有幾個另一個數(shù)的除法含義。3.關(guān)鍵:以解決問題為載體,培養(yǎng)學(xué)生的數(shù)感。
教后反思本節(jié)課給學(xué)生創(chuàng)設(shè)了良好的活動空間,把學(xué)生實(shí)際生活中聽說過的見到的平均分現(xiàn)象展示給學(xué)生看,把生活和數(shù)學(xué)聯(lián)系起來,在學(xué)生感受“同樣多”的基礎(chǔ)上概括出什么叫平均分。揭示平均分這一數(shù)學(xué)知識在生活中的應(yīng)用,之后突出了學(xué)生三次實(shí)際操作。第一次,小組同學(xué)互相分水果,重視學(xué)生分的結(jié)果。體會感受“平均分”的含義。第二次,重視分法:15個橘子平均分成5份。體現(xiàn)了學(xué)生對物品的不同分法,建立了平均分的概念。第三次,分礦泉水,通過份數(shù)變化,觀察分的就結(jié)果,深刻體會“平均分”,為認(rèn)識除法積累豐富的知識。為學(xué)生營造探索的空間。第二課時(shí):平均分的認(rèn)識(二)教學(xué)內(nèi)容鞏固“平均分”。課本第15頁的例題3。教學(xué)目標(biāo)1.鞏固“平均分”的概念,知道平均分就是每一份分得結(jié)果同樣多。
【教學(xué)目標(biāo)】(一)教學(xué)知識點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點(diǎn)的認(rèn)識和對二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會畫y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們在教學(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
1.使學(xué)生掌握用描點(diǎn)法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
然后能通過圖象找出變量的對應(yīng)關(guān)系在圖象上的體現(xiàn)。3、做一做:課本P154第1小題,學(xué)生在課本上填表,讓學(xué)生通過填表,體會變量之間的相依關(guān)系。4、師生小結(jié):和學(xué)生一起對剛才的三個例子進(jìn)行總結(jié),啟發(fā)學(xué)生思考三個例子的相同點(diǎn)和不同點(diǎn),如表現(xiàn)形式不同,有圖象、表格、代數(shù)表達(dá)式。相同的有它們都是兩個變量,確定其中一個變量后就能相應(yīng)確定另一個變量的值。從而使學(xué)生的認(rèn)識上升一個高度,并掌握函數(shù)的概念5、課堂練習(xí):完成課本P155隨堂練習(xí)。通過本練習(xí)的完成鞏固概念并會用概念去判斷兩個變量間的關(guān)系是否可看做函數(shù)。6、新課鞏固:以填空形式對本堂課進(jìn)行小結(jié),使學(xué)生對函數(shù)的概念及應(yīng)用有一定記憶。并通過對最后問題的思考使學(xué)生意識到數(shù)學(xué)來自生活,并能應(yīng)用于生活。
接下來學(xué)生類比有理數(shù)中相關(guān)概念,體會到了實(shí)數(shù)范圍內(nèi)的相反數(shù)、倒數(shù)、絕對值的意義,并進(jìn)一步掌握了實(shí)數(shù)的相反數(shù)、倒數(shù)、絕對值等知識。學(xué)生類比有理數(shù)中相關(guān)運(yùn)算,體會到了實(shí)數(shù)范圍內(nèi)的運(yùn)算及運(yùn)算律。并探討用數(shù)軸上的點(diǎn)來表示實(shí)數(shù),將數(shù)和圖形聯(lián)系在一起,讓學(xué)生進(jìn)一步領(lǐng)會數(shù)形結(jié)合的思想,利用數(shù)軸也可以直觀地比較兩個實(shí)數(shù)的大小。然后通過相關(guān)練習(xí),檢測學(xué)生對實(shí)數(shù)相關(guān)知識的掌握情況。最后學(xué)生交流,互相補(bǔ)充,完成本節(jié)知識的梳理。布置作業(yè):所布置作業(yè)都是緊緊圍繞著“實(shí)數(shù)”的概念及運(yùn)用。設(shè)計(jì)選作題是為了給學(xué)有余力的學(xué)生留出自由發(fā)展的空間。五、關(guān)于板書設(shè)計(jì)我將板書設(shè)計(jì)為“提綱式”。這樣設(shè)計(jì)主要是力求重點(diǎn)突出,能加深學(xué)生對重點(diǎn)知識的理解和掌握,便于記憶。
教材分析:例2以學(xué)校興趣小組為題材,引出稍復(fù)雜的已知一個數(shù)的幾分之幾是多少,求這個數(shù)的實(shí)際問題。用算術(shù)方法解決這樣的實(shí)際問題,不僅需要逆向思考,還要把“比一個數(shù)多它的幾分之幾”,轉(zhuǎn)化為“是一個數(shù)的幾分之幾”,比較抽象,思維難度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要經(jīng)歷從“多幾分之幾”到“是幾分之幾”的轉(zhuǎn)化,實(shí)際上是方程的形式,算術(shù)的思路。教學(xué)重點(diǎn):弄清單位“1”的量,會分析題中的數(shù)量關(guān)系。教學(xué)難點(diǎn):分析題中的數(shù)量關(guān)系。學(xué)情分析:由于小學(xué)生目前尚未接觸到比較復(fù)雜的,用算術(shù)方法很難解決的實(shí)際問題,所以對方程解法的優(yōu)越認(rèn)識不足。一些學(xué)生覺得用方程解需要寫設(shè)句,比較麻煩,因此喜歡用算術(shù)解法。對此,教師一方面應(yīng)肯定學(xué)生自己想到的正確解法,另一方面又要因勢利導(dǎo),從進(jìn)一步學(xué)習(xí)的需要與方程解法的特點(diǎn)等角度,使學(xué)生初步了解學(xué)習(xí)列方程解決問題的重要性。從而提高學(xué)習(xí)用方程解決問題的自覺性和積極性。
⒊演示操作法:直觀演示能給學(xué)生提供鮮明的感性材料,通過多種感官協(xié)同作用,利用學(xué)生在操作中建立表象,使抽象思維轉(zhuǎn)化為形象思維。⒋談話法:運(yùn)用師生之間的談話組織教學(xué),既可使學(xué)生的思維方向明確,又便于教師了解學(xué)生理解和掌握知識的程度。⒌練習(xí)法:通過各種練習(xí),加深學(xué)生對知識的理解和掌握,形成熟練的解題技能,進(jìn)一步發(fā)展學(xué)生的思維。(2)、說學(xué)法古人云:“教之以魚,只供一餐,授之以漁,受用終生”,教師既管教,又要管學(xué),把教落在學(xué)上,重點(diǎn)是把學(xué)習(xí)方法教給學(xué)生,使學(xué)生樂學(xué)、會學(xué),教學(xué)中,讓學(xué)生學(xué)習(xí)并初步掌握的學(xué)習(xí)方法有:⒈歸納法:通過例題的教學(xué),經(jīng)過理解、分析、歸納推導(dǎo)出除法的意義。⒉觀察法:指導(dǎo)學(xué)生仔細(xì)觀察,學(xué)會找知識的生長點(diǎn)和解題的關(guān)鍵所在。
一、說教材分析 《除數(shù)是整數(shù)的小數(shù)除法》是九年制義務(wù)教育第二學(xué)段數(shù)與代數(shù)領(lǐng)域的內(nèi)容,是在學(xué)生已經(jīng)掌握了整數(shù)除法的意義和計(jì)算方法,小數(shù)的意義和性質(zhì)等基礎(chǔ)上進(jìn)行學(xué)習(xí)的。本節(jié)課也是整數(shù)除法意義上的進(jìn)一步擴(kuò)展,也將為今后學(xué)習(xí)小數(shù)除以小數(shù)、小數(shù)四則混合運(yùn)算打下基礎(chǔ)。因此,學(xué)生掌握本節(jié)課的內(nèi)容有重要的意義和作用。 二、說學(xué)情分析學(xué)生已掌握整數(shù)除法、小數(shù)的意義和基本性質(zhì)以及小數(shù)乘法等知識,應(yīng)充分利用學(xué)生的生活經(jīng)驗(yàn)和已有知識,引導(dǎo)學(xué)生探索除數(shù)是整數(shù)的小數(shù)除法的計(jì)算方法。 根據(jù)教材內(nèi)容,結(jié)合學(xué)生的心理特征和認(rèn)知結(jié)構(gòu),制定教學(xué)目標(biāo)如下: 1、知識與技能:使學(xué)生理解算理;掌握算法并能正確地進(jìn)行計(jì)算。 2、過程與方法:在探究算法的過程中,培養(yǎng)學(xué)生的類推能力、分析能力和抽象概括能力。 3、情感態(tài)度和價(jià)值觀:使學(xué)生體驗(yàn)所學(xué)知識與現(xiàn)實(shí)生活的聯(lián)系,能解決生活中簡單問題。
(四)、鞏固練習(xí)1.操場上打籃球的有4人,打籃球的人數(shù)是踢足球的 ,踢足球的有多少人?2.踢毽子的人數(shù)是踢足球人數(shù)的 ,踢毽子的有多少人?引導(dǎo)學(xué)生找出等量關(guān)系式,然后再解答。指名板演。3.某月雙休日共有9天,是這個月總天數(shù)的 ,這個月有多少天?(課件展示完整過程)(五)、課堂小結(jié),整理內(nèi)化1.我們這節(jié)課學(xué)習(xí)了用方程解決一類分?jǐn)?shù)除法應(yīng)用題的方法,你能來總結(jié)一下這類方法的一般步驟嗎?(師生回顧解決問題的步驟并總結(jié))2.課件展示一般步驟:用方程解答分?jǐn)?shù)除法應(yīng)用題的一般步驟:(1)分析題意,判斷單位“1”(即“總量”)。(2)寫出等量關(guān)系式。(3)設(shè)未知數(shù),列出方程。(4)解方程。(5)寫答語并檢驗(yàn)。(六)、作業(yè):30頁2、3題
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。