1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質(zhì)(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應用
(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關系式后運用函數(shù)性質(zhì)來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關鍵.三、板書設計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學生進行合作交流.在解決有關平行四邊形的問題時,要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學生的邏輯思維能力.
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).
授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅(qū)動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設情境 興趣導入 【知識回顧】 初中我們曾經(jīng)學習過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個組內(nèi)的個數(shù). 【知識鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設定分點數(shù)值時需要考慮分點值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質(zhì)疑 引領 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 各組內(nèi)數(shù)據(jù)的個數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個數(shù)之比叫做該組的頻率. 計算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應矩形的面積. 【想一想】 各小矩形的面積之和應該等于1.為什么呢? 【新知識】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當,這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領 分析 仔細 分析 關鍵 語句 觀察 理解 記憶 帶領 學生 分析 25
課題序號6-3授課形式講授與練習課題名稱等比數(shù)列課時2教學 目標知識 目標理解并掌握等比數(shù)列的概念,掌握并能應用等比數(shù)列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質(zhì) 目標通過對等比數(shù)列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結(jié)的科學思維習慣和嚴謹?shù)膶W習態(tài)度。教學 重點等比數(shù)列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數(shù)列的通項公式與求和公式變式運用。教學內(nèi)容 調(diào)整無學生知識與 能力準備數(shù)列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核
系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內(nèi)容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結(jié)論,從而達到使學生既獲得知識又發(fā)展智能的目的.
課程名稱數(shù)學課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標群體14級五高班教學環(huán)境教室學習目標知識目標: (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標: 正確分析問題的能力 制造業(yè)通用能力目標: 正確分析問題的能力學習重點直線的斜率公式的應用.學習難點直線的斜率概念和公式的理解.教法、學法講授、分析、討論、引導、提問教學媒體黑板、粉筆
課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運用這些特征描述生活中簡單物體的結(jié)構(gòu)。 2、讓學生了解柱、錐、球的側(cè)面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。
課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領 分析 理解 記憶 帶領 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數(shù)學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數(shù)學期末考試成績是總體,每一個學生的數(shù)學期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強調(diào) 引領 觀察 思考 主動 求解 通過例題進一步領會 35
課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質(zhì)和推論,會應用定理和推論解釋生活中的一些現(xiàn)象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當?shù)姆柋硎军c、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內(nèi)容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差
【教學目標】1. 理解數(shù)列的通項公式的意義,能根據(jù)通項公式寫出數(shù)列的任意一項,以及根據(jù)其前幾項寫出它的一個通項公式.2. 了解數(shù)列的遞推公式,會根據(jù)數(shù)列的遞推公式寫出前幾項.3.培養(yǎng)學生積極參與、大膽探索的精神,培養(yǎng)學生的觀察、分析、歸納的能力.教學重點 數(shù)列的通項公式及其應用.教學難點 根據(jù)數(shù)列的前幾項寫出滿足條件的數(shù)列的一個通項公式.教學方法 本節(jié)課主要采用例題解決法.通過列舉實例,進一步研究數(shù)列的項與序號之間的關系.通過三類題目,使學生深刻理解數(shù)列通項公式的意義,為以后學習等差數(shù)列與等比數(shù)列打下基礎.【教學過程】 環(huán)節(jié)教學內(nèi)容師生互動設計意圖導 入⒈數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列. 注意:(1)數(shù)列中的數(shù)是按一定次序排列的; (2)同一個數(shù)在數(shù)列中可以重復出現(xiàn). 2. 數(shù)列的一般形式 數(shù)列a1,a2,a3,…,an,…,可記作{ an }. 3. 數(shù)列的通項公式: 如果數(shù)列{ an }的第n項an與n之間的關系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的通項公式. 教師引導學生復習. 為學生進一步理解通項公式,應用通項公式解決實際問題做好準備.
授課 日期 班級16高造價 課題: §6.3等比數(shù)列 教學目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項公式; 3.掌握等比數(shù)列前 n 項和公式及推導過程,能用公式求相關參數(shù); 教學重點、難點:運用等比數(shù)列的通項公式求相關參數(shù) 授課方法: 任務驅(qū)動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》 授課執(zhí)行情況及分析: 板書設計或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學生板書區(qū)) 2. 等比數(shù)列的通項公式 3.等比數(shù)列的求和公式
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關鍵.三、板書設計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學時要多舉幾個例子,讓學生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學學習的魅力,為以后的學習奠定基礎
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.