(設(shè)計(jì)意圖:因?yàn)閳A中有關(guān)的點(diǎn)、線、角及其他圖形位置關(guān)系的復(fù)雜,學(xué)生往往因?qū)σ阎獥l件的分析不夠全面,忽視某個(gè)條件,某種特殊情況,導(dǎo)致漏解。采用小組討論交流的方式進(jìn)行要及時(shí)進(jìn)行小組評(píng)價(jià)。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設(shè)計(jì)意圖:通過(guò)練習(xí),使學(xué)生能靈活運(yùn)用圓周角定理進(jìn)行幾何題的證明,規(guī)范步驟,提高利用定理解決問(wèn)題的能力。)(三)說(shuō)小結(jié)首先,通過(guò)學(xué)生小組交流,談一談你有什么收獲。(提示學(xué)生從三方面入手:1、學(xué)到了知識(shí);2、掌握了哪些數(shù)學(xué)方法;3、體會(huì)到了哪些數(shù)學(xué)思想。)然后,教師引導(dǎo)小組間評(píng)價(jià)。使學(xué)生對(duì)本節(jié)內(nèi)容有一個(gè)更系統(tǒng)、深刻的認(rèn)識(shí),實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。(四)、板書(shū)設(shè)計(jì)為了集中濃縮和概括本課的教學(xué)內(nèi)容,使教學(xué)重點(diǎn)醒目、突出、合理有序,以便學(xué)生對(duì)本課知識(shí)點(diǎn)有了完整清晰的印象。我只選擇了本節(jié)課的兩個(gè)知識(shí)點(diǎn)作為板書(shū)。
通過(guò)與學(xué)生講解切線長(zhǎng)定義,讓學(xué)生在參與、合作中有一個(gè)猜想,再進(jìn)一步提出更有挑戰(zhàn)性的問(wèn)題,能否用數(shù)學(xué)的方法加以證明。問(wèn)題的解決,使學(xué)生既能解決新的問(wèn)題,同時(shí)應(yīng)用到全等、切線的性質(zhì)等知識(shí),同時(shí)三條輔助線中,兩條運(yùn)用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語(yǔ)言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過(guò)前面的學(xué)習(xí)學(xué)生們已經(jīng)對(duì)切線長(zhǎng)定理有了較深刻的了解。為了加深學(xué)生對(duì)定理的認(rèn)識(shí)并培養(yǎng)學(xué)生的應(yīng)用意識(shí)學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨(dú)立完成,加深對(duì)切線長(zhǎng)定理的理解,老師進(jìn)行點(diǎn)評(píng),對(duì)于例2,由師生共同分析完成,交進(jìn)行示范板書(shū)。(4) 鞏固與提高此訓(xùn)練題分為二個(gè)層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識(shí)體系中,使學(xué)生的知識(shí)體系得到補(bǔ)充和完善。(5) 歸納與小結(jié)通過(guò)小結(jié),使知識(shí)成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識(shí)。
5、課本練習(xí):P129引導(dǎo)學(xué)生運(yùn)用隨機(jī)數(shù)表來(lái)模擬試驗(yàn)過(guò)程并給予解答。問(wèn)題2:有四個(gè)鬮,其中兩個(gè)分別代表兩件獎(jiǎng)品,四個(gè)人按順序依次抓鬮來(lái)決定這兩件獎(jiǎng)品的歸屬,先抓的人中獎(jiǎng)率一定大嗎?教法:可組織學(xué)生用試驗(yàn)的方法來(lái)說(shuō)明問(wèn)題,對(duì)于試驗(yàn)的結(jié)果是有說(shuō)服力的,很容易使學(xué)生相信摸獎(jiǎng)的次序?qū)χ歇?jiǎng)的概率沒(méi)有影響。問(wèn)題3:彩民甲研究了近幾期這種體育彩票的中獎(jiǎng)號(hào)碼,發(fā)現(xiàn)數(shù)字06和08出現(xiàn)的次數(shù)最多,他認(rèn)為,06和08是“幸運(yùn)號(hào)碼”,因此,他在所買(mǎi)的每一注彩票中都選上了06和08。你認(rèn)為他這樣做有道理嗎?教法說(shuō)明:要讓學(xué)生看到試驗(yàn)方法對(duì)試驗(yàn)結(jié)果的影響:1、 因?yàn)殚_(kāi)獎(jiǎng)用的36個(gè)球是均勻的、無(wú)差別的,所以每個(gè)號(hào)碼被選為中獎(jiǎng)號(hào)碼的可能性是一樣的,不存在“幸運(yùn)號(hào)碼”。
教學(xué)過(guò)程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書(shū)設(shè)計(jì) (一)、新課引入教師提問(wèn):一個(gè)直角三角形中,一個(gè)銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計(jì)意圖】回顧上節(jié)課所學(xué)的內(nèi)容,便于后面教學(xué)的開(kāi)展。 (二)、探究新知活動(dòng)一、探索特殊角的三角函數(shù),并填寫(xiě)課本表格[問(wèn)題] 1、觀察一副三角尺,其中有幾個(gè)銳角?它們分別等于多少度? [問(wèn)題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問(wèn)題] 3、cos30°等于多少?tan30°呢? [問(wèn)題] 4、我們求出了30°角的三個(gè)三角函數(shù)值,還有兩個(gè)特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
本節(jié)課的設(shè)計(jì)是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過(guò)程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過(guò)程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。2、學(xué)法研究“贈(zèng)人以魚(yú),不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺(jué)中運(yùn)用舊知識(shí)的鑰匙去打開(kāi)新知識(shí)的大門(mén),進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問(wèn)題,通過(guò)基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
第一道例題提示學(xué)生把地基看成一個(gè)幾何圖形,即正六邊形,逐步引導(dǎo)學(xué)生完成例題的解答。例題1:有一個(gè)亭子它的地基是半徑為4米的正六邊形,求地基的周長(zhǎng)和面積(精確到0.1平方米)。第二道例題,我讓學(xué)生獨(dú)立完成,我在下面巡視,個(gè)別輔導(dǎo),同時(shí)我將關(guān)注不同層次學(xué)生對(duì)本節(jié)知識(shí)的理解、掌握程度,及時(shí)調(diào)整教學(xué)。最后,引導(dǎo)學(xué)生總結(jié)這一類(lèi)問(wèn)題的求解方法。這兩道例題旨在將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,將多邊形化歸成三角形來(lái)解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學(xué)完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。
當(dāng)然,在討論的過(guò)程中,對(duì)個(gè)別學(xué)生要及時(shí)點(diǎn)撥利用相似三角形對(duì)應(yīng)邊的關(guān)系來(lái)求AD,至于S與x的關(guān)系式自然是水到渠成了。接著讓同學(xué)們以小組為單位,派出代表展示自己的討論成果。然后我進(jìn)一步拋出重點(diǎn)問(wèn)題3)這里S與x是一種什么函數(shù)關(guān)系?當(dāng)x 取何值時(shí),S的值最大?最大值是多少?這個(gè)例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長(zhǎng)和寬,通過(guò)學(xué)生的思考、討論、大家都明白了S與x的關(guān)系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題了.簡(jiǎn)單的小組交流過(guò)后,同學(xué)們爭(zhēng)先恐后表達(dá)自己的觀點(diǎn):有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點(diǎn)坐標(biāo)求出了最大面積。 ,我及時(shí)的鼓勵(lì)學(xué)生:大家真的很棒,老師為你們驕傲,請(qǐng)?jiān)俳釉賲枴?/p>
教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過(guò)程,進(jìn)一步體會(huì)三角函數(shù)在解決問(wèn)題過(guò)程中的應(yīng)用.2.能夠把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,能夠借助于計(jì)算器進(jìn)行有關(guān)三角函數(shù)的計(jì)算,并能對(duì)結(jié)果的意義進(jìn)行說(shuō)明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和解決問(wèn)題的能力.(三)情感與價(jià)值觀要求1.在經(jīng)歷弄清實(shí)際問(wèn)題題意的過(guò)程中,畫(huà)出示意圖,培養(yǎng)獨(dú)立思考問(wèn)題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動(dòng),提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點(diǎn)1.經(jīng)歷探索船是否有觸礁危險(xiǎn)的過(guò)程,進(jìn)一步體會(huì)三角函數(shù)在解決問(wèn)題過(guò)程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識(shí)和解決問(wèn)題的能力.教學(xué)難點(diǎn)根據(jù)題意,了解有關(guān)術(shù)語(yǔ),準(zhǔn)確地畫(huà)出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類(lèi)型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()
(8)物價(jià)部門(mén)規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤(rùn)?最大利潤(rùn)為多少萬(wàn)元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過(guò)200萬(wàn)元,請(qǐng)你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫(xiě)出銷(xiāo)售該品牌童裝獲得的利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于76元,不高于78元,那么商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少元?(3)若童裝廠規(guī)定該品牌童裝銷(xiāo)售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷(xiāo)售任務(wù),那么商場(chǎng)銷(xiāo)售該品牌童裝獲得的最大利潤(rùn)是多少元?
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
方法總結(jié):解答此類(lèi)題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類(lèi)型三】 構(gòu)造直角三角形解決面積問(wèn)題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長(zhǎng),再根據(jù)解直角三角形求出CD的長(zhǎng),最后根據(jù)三角形的面積公式解答即可.解:過(guò)點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類(lèi)題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.
首先請(qǐng)學(xué)生分析:過(guò)B、C作梯形ABCD的高,將梯形分割成兩個(gè)直角三角形和一個(gè)矩形來(lái)解.教師可請(qǐng)一名同學(xué)上黑板板書(shū),其他學(xué)生筆答此題.教師在巡視中為個(gè)別學(xué)生解開(kāi)疑點(diǎn),查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長(zhǎng)46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過(guò)評(píng)價(jià)黑板上的板演,總結(jié)解坡度問(wèn)題需要注意的問(wèn)題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計(jì)算中盡量選擇較簡(jiǎn)便、直接的關(guān)系式加以計(jì)算.三、課堂小結(jié):請(qǐng)學(xué)生總結(jié):解直角三角形時(shí),運(yùn)用直角三角形有關(guān)知識(shí),通過(guò)數(shù)值計(jì)算,去求出圖形中的某些邊的長(zhǎng)度或角的大小.在分析問(wèn)題時(shí),最好畫(huà)出幾何圖形,按照?qǐng)D中的邊角之間的關(guān)系進(jìn)行計(jì)算.這樣可以幫助思考、防止出錯(cuò).四、布置作業(yè)
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱(chēng)軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱(chēng),根據(jù)點(diǎn)C在對(duì)稱(chēng)軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱(chēng)軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱(chēng).∵點(diǎn)C在對(duì)稱(chēng)軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
問(wèn)題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過(guò)測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤(pán),使度盤(pán)的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無(wú)障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.
③設(shè)每件襯衣降價(jià)x元,獲得的利潤(rùn)為y元,則定價(jià)為 元 ,每件利潤(rùn)為 元 ,每星期多賣(mài) 件,實(shí)際賣(mài)出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤(rùn),最大利潤(rùn)為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤(rùn)最大?☆ 歸納反思 ☆總結(jié)得出求最值問(wèn)題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過(guò)配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測(cè) ☆ 1、用長(zhǎng)為6m的鐵絲做成一個(gè)邊長(zhǎng)為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長(zhǎng)為 時(shí)矩形面積最大.2、藍(lán)天汽車(chē)出租公司有200輛出租車(chē),市場(chǎng)調(diào)查表明:當(dāng)每輛車(chē)的日租金為300元時(shí)可全部租出;當(dāng)每輛車(chē)的日租金提高10元時(shí),每天租出的汽車(chē)會(huì)相應(yīng)地減少4輛.問(wèn)每輛出租車(chē)的日租金提高多少元,才會(huì)使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長(zhǎng)度,通過(guò)坡度得到∠ECF=30°,通過(guò)平角減去其他角從而得到∠AEF=45°,即可求出AE的長(zhǎng)度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂(lè)場(chǎng)地所在山坡AE的長(zhǎng)度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤(rùn)=每件的利潤(rùn)×銷(xiāo)售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開(kāi)口向下,對(duì)稱(chēng)軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷(xiāo)售該商品第45天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤(rùn)的計(jì)算方法,即利潤(rùn)=每件的利潤(rùn)×銷(xiāo)售的件數(shù),是解決問(wèn)題的關(guān)鍵.
如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類(lèi)型一】 利用二次函數(shù)求矩形面積的最大值
解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過(guò)中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類(lèi)型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?