【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.
∴此方程無解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過程,體驗(yàn)用類比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識的興趣,體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡單的問題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.
課題序號 授課班級 授課課時(shí)2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會用符號表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆柋硎军c(diǎn)、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動手畫,動腦想,但立體幾何的語言及想象能力差
1、數(shù)數(shù)格子,認(rèn)清方向(完成想想做做第1題)設(shè)計(jì)意圖:本題在于讓學(xué)生認(rèn)清平移的方向和距離,感受平移的不同方法。在教學(xué)中,讓學(xué)生自己獨(dú)立思考完成,自由發(fā)言。鼓勵(lì)學(xué)生說出不同的平移方法。2、小試牛刀(完成想想做做第2題)設(shè)計(jì)意圖:本題主要是讓學(xué)生掌握按要求畫平移后的圖形。這是本節(jié)課的難點(diǎn)。在教學(xué)中,先讓學(xué)生獨(dú)立畫圖,教師巡視作圖情況,對有困難的學(xué)生給予指導(dǎo)。在學(xué)生完成作圖后,投影部分學(xué)生的作品,交流平移的過程與方法。最后在多媒體課件上展示畫法。.3、平移的運(yùn)用(“想想做做”第3題)設(shè)計(jì)意圖:本題在于使學(xué)生學(xué)會運(yùn)用平移的知識畫平行線,體會平移的價(jià)值。(四)課堂小結(jié),升華提高提問:今天你有哪些收獲?設(shè)計(jì)意圖:以問題為載體,引領(lǐng)學(xué)生對本節(jié)課的歸來總結(jié)。讓學(xué)生再次理解圖形的斜向平移可轉(zhuǎn)換成橫向平移和豎向平移。
此題的設(shè)計(jì)目的:及時(shí)的練習(xí)一是起到鞏固新知識的目的,二是及時(shí)了解學(xué)生掌握新知識的情況,起到反饋的目的。這樣設(shè)計(jì)的依據(jù)是:小題多,是讓更多的學(xué)生參與到學(xué)習(xí)中來,及時(shí)給予他們更正,更多的是對他們的鼓勵(lì)和表揚(yáng),有簡單的題盡量讓基礎(chǔ)不太好的的學(xué)生去說,以讓他們感受到成功的樂趣;并且《新課標(biāo)》中指出課程內(nèi)容應(yīng)處于學(xué)生“最近發(fā)展區(qū)”的范圍以內(nèi),讓成功始終伴隨學(xué)生學(xué)習(xí)的旅程,以保證學(xué)生不會因過多的失敗而放棄他們的努力,失去發(fā)展的機(jī)會。第四環(huán)節(jié):師生合作,歸納總結(jié)。先由學(xué)生個(gè)人總結(jié),然后教師補(bǔ)充。設(shè)計(jì)目的:通過學(xué)生個(gè)人小結(jié),教師可以了解學(xué)生掌握知識的情況,培養(yǎng)學(xué)生總結(jié)概括的能力,教師補(bǔ)充起到完善所學(xué)知識的目的。第五環(huán)節(jié):布置作業(yè),鞏固提高。設(shè)計(jì)目的:因材施“作業(yè)”,分層次布置作業(yè),減輕學(xué)生的負(fù)擔(dān),全面推行素質(zhì)教育,讓學(xué)生學(xué)有用的數(shù)學(xué),不同的學(xué)生學(xué)習(xí)不同的數(shù)學(xué),在數(shù)學(xué)中得到不同的發(fā)展,以求彰顯學(xué)生的個(gè)性。
4.已知一個(gè)三角形的兩邊長分別是4cm、7cm,則這個(gè)三角形的周長的取值范圍是什么?目的:主要是讓學(xué)生掌握三角形三邊的和差關(guān)系具體的應(yīng)用,并能應(yīng)用生活中實(shí)際問題。同學(xué)之間可以合作交流互相探討,發(fā)展學(xué)生空間觀念、推理能力,使學(xué)生善于觀察生活、樂于探索研究,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,從中適當(dāng)?shù)膶W(xué)生進(jìn)行德育教育,教育學(xué)生穿越馬路時(shí)間越長就越危險(xiǎn)。(五)課堂小結(jié)學(xué)生自我談收獲體會,說說學(xué)完本節(jié)課的困惑。教師做最終總結(jié)并指出注意事項(xiàng)。目的:讓學(xué)生暢所欲言,談收獲體會,教師給予鼓勵(lì)。主要是讓學(xué)生熟記新知能應(yīng)用新知解決問題,培養(yǎng)學(xué)生概括總結(jié)的能力、有條理的表達(dá)能力。注意事項(xiàng)為:判斷a,b,c三條線段能否組成一個(gè)三角形,應(yīng)注意:a+b>c,a+c>b,b+c>a三個(gè)條件缺一不可。當(dāng)a是a,b,c三條線段中最長的一條時(shí),只要b+c>a就是任意兩條線段的和大于第三邊。
說明:8.2.1在表示范表演的點(diǎn)畫空心圓圈,表不包括這一點(diǎn),表示大時(shí)就往右拐;圖8.2.2在表示-2的點(diǎn)畫黑點(diǎn)表示包括這一點(diǎn),表示小時(shí)往左拐。3,講解補(bǔ)充例題,例1:判斷:①x=2是不等式4x<9的一個(gè)解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設(shè)計(jì)意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點(diǎn))4.鞏固練習(xí):課本44頁練習(xí)2,3題5.歸納總結(jié),結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點(diǎn)知識和學(xué)習(xí)方法,達(dá)到掌握重點(diǎn),順理成章的目的。6.作業(yè):課本49頁習(xí)題1,2題
a.第127頁隨堂練習(xí)1第(1)題。b.一個(gè)多邊形的邊都相等,這是一個(gè)正多邊形嗎?c.一個(gè)多邊形的內(nèi)角都相等,這是一個(gè)正多邊形嗎?d.所以,一個(gè)相等,也都相等的多邊形才是。(此檢測主要是讓學(xué)說出多邊形和正多邊形的定義,因?yàn)槭窃谌切巍⑺倪呅蔚幕A(chǔ)上,定義是一致的,所以不深究。在教材的處理上,把正多邊形放在了前面,兩個(gè)較為簡單的概念放在一起,便于學(xué)生理解和掌握。)2.各組展示四邊形的內(nèi)角和的計(jì)算方法。3.各組展示五邊形的內(nèi)角和的計(jì)算方法。(由各組派代表上臺板演,其它組補(bǔ)充,真正讓學(xué)生動起來)4.各組選擇前面最優(yōu)的方法,口述六邊形、七邊形的內(nèi)角和的算法。(以此上,學(xué)生可以利用對比的方法,選擇作出過三角形的一個(gè)頂點(diǎn)的對角線的方法,讓學(xué)生探索發(fā)現(xiàn)規(guī)律。)5.據(jù)此,你們認(rèn)為n邊形的內(nèi)角和應(yīng)該怎樣計(jì)算。(注意n的條件)五、當(dāng)堂訓(xùn)練。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內(nèi)容,是進(jìn)一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識的基礎(chǔ),同時(shí)也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識一樣,它在實(shí)際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進(jìn)行運(yùn)算是學(xué)好分式運(yùn)算的關(guān)鍵,為學(xué)生綜合運(yùn)用多種運(yùn)算法則拓寬了空間,有利于學(xué)生對雙基的掌握,在綜合運(yùn)用多種運(yùn)算法則的過程中,逐漸形成運(yùn)算能力。同時(shí)本節(jié)課的教學(xué)難度有所增加,學(xué)生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點(diǎn)、難點(diǎn)如下:(一)說教學(xué)目標(biāo):1.知識與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運(yùn)算和通分的過程,訓(xùn)練學(xué)生的分式運(yùn)算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問題為已知問題的能力;進(jìn)一步通過實(shí)例發(fā)展學(xué)生的符號感。
通過以上例題幫助學(xué)生總結(jié)出分式乘除法的運(yùn)算步驟(當(dāng)分式的分子與分母都是單項(xiàng)式時(shí)和當(dāng)分式的分子、分母中有多項(xiàng)式兩種情況)4、隨堂練習(xí)。(約5分鐘)76頁第一題,共3個(gè)小題。教學(xué)效果:在總結(jié)出分式乘除法的運(yùn)算步驟后,大部分學(xué)生能很好的掌握,但是還有些學(xué)生忘記運(yùn)算結(jié)果要化成最簡形式,老師要及時(shí)提醒學(xué)生。 分解因式的知識沒掌握好,將會影響到分式的運(yùn)算,所以有的學(xué)生有必要復(fù)習(xí)和鞏固一下分解因式的知識。5、數(shù)學(xué)理解(約5分鐘)教材77頁的數(shù)學(xué)理解,學(xué)生很容易出現(xiàn)像小明那樣的錯(cuò)誤。但是也很容易找出錯(cuò)誤的原因。補(bǔ)充例3 計(jì)算(xy-x2)÷ ? 教學(xué)效果:鞏固分式乘除法法則,掌握分式乘除法混合運(yùn)算的方法。提醒學(xué)生,負(fù)號要提到分式前面去。6、課堂小結(jié)(約3分鐘)先學(xué)生分組小結(jié),在全班交流,最后老師總結(jié)。
活動目的:通過兩個(gè)圖案設(shè)計(jì),一個(gè)是讓學(xué)生獨(dú)立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進(jìn)一步鞏固應(yīng)用;另一個(gè)是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進(jìn)一步培養(yǎng)學(xué)生幾何語言表達(dá)能力,并積累尺規(guī)作圖的活動經(jīng)驗(yàn)。活動注意事項(xiàng):根據(jù)課堂時(shí)間安排,可靈活進(jìn)行處理,既可以作為本節(jié)課的實(shí)際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價(jià)值的數(shù)學(xué)。四、 教學(xué)設(shè)計(jì)反思1.利用現(xiàn)實(shí)情景引入新課,既能體現(xiàn)數(shù)學(xué)知識與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識。而在了解基礎(chǔ)知識以后,將其進(jìn)行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會知識的漸進(jìn)發(fā)展過程,增強(qiáng)思維能力的培養(yǎng)。同時(shí),在整個(gè)探究過程中,怎樣團(tuán)結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個(gè)途徑。
【教學(xué)目標(biāo)】知識目標(biāo):⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會判斷簡單函數(shù)的奇偶性.能力目標(biāo):⑴ 通過利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學(xué)生的觀察能力;⑵ 通過函數(shù)奇偶性的判斷,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力.【教學(xué)重點(diǎn)】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡單函數(shù)奇偶性的判定.【教學(xué)難點(diǎn)】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學(xué)設(shè)計(jì)】(1)用學(xué)生熟悉的主題活動將所學(xué)的知識有機(jī)的整合在一起;(2)引導(dǎo)學(xué)生去感知數(shù)學(xué)的數(shù)形結(jié)合思想.通過圖形認(rèn)識特征,由此定義性質(zhì),再利用圖形(或定義)進(jìn)行性質(zhì)的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學(xué)生的思維能力.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】3課時(shí).(90分鐘)【教學(xué)過程】
創(chuàng)設(shè)情景 興趣導(dǎo)入問題 觀察鐘表,如果當(dāng)前的時(shí)間是2點(diǎn),那么時(shí)針走過12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?再經(jīng)過12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?.解決每間隔12小時(shí),當(dāng)前時(shí)間2點(diǎn)重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個(gè)不為零的常數(shù),當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個(gè)函數(shù)的一個(gè)周期. 由于正弦函數(shù)的定義域是實(shí)數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
學(xué)生在觀察和討論后,由師生合作,歸納出中心對稱的性質(zhì):(1)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分;(2)關(guān)于中心對稱的兩個(gè)圖形是全等圖形.讓學(xué)生嘗試自己證明△ABC與△A′B′C′全等,然后在教師的引導(dǎo)下相互交流。接著,對“軸對稱”和“中心對稱”的概念進(jìn)行比較,我采用列表格的方式,從三個(gè)方面分別讓學(xué)生去填,意圖讓學(xué)生把新學(xué)的知識及時(shí)納入到已學(xué)的知識體系中去。4、靈活運(yùn)用體會內(nèi)涵1)首先講授例1。(1)選擇點(diǎn)O為對稱中心,畫出點(diǎn)A關(guān)于點(diǎn)O的對稱點(diǎn)A′;(2)選擇點(diǎn)O為對稱中心,畫出線段AB關(guān)于點(diǎn)O的對稱線段A′B′.(3)已知四邊形ABCD和O點(diǎn),畫出四邊形ABCD關(guān)于O點(diǎn)的對稱圖形。在老師的引導(dǎo)下,共同完成作圖,并規(guī)范畫圖方法:要畫一個(gè)多邊形關(guān)于已知點(diǎn)的對稱圖形,只要畫出這個(gè)多邊形的各個(gè)頂點(diǎn)關(guān)于已知點(diǎn)的對稱點(diǎn),再順次連接各點(diǎn)即可。在本次活動中,意圖利用中心對稱的性質(zhì)進(jìn)行作圖,加強(qiáng)對中心對稱性質(zhì)的理解。
2、測量。各個(gè)組的成員根據(jù)上面的設(shè)計(jì)方案在小組長的帶領(lǐng)下到操場測量相關(guān)數(shù)據(jù)。比一比,哪組最先測量完并回到教室?(二)根據(jù)測量結(jié)果計(jì)算相關(guān)物體高度。時(shí)間為2分鐘。要求:獨(dú)立計(jì)算,并填寫好實(shí)驗(yàn)報(bào)告上。(三)展示測量結(jié)果。時(shí)間為3分鐘。各組都將自己計(jì)算的結(jié)果報(bào)告,看哪些同學(xué)計(jì)算準(zhǔn)確些?(四)整理實(shí)驗(yàn)報(bào)告,上交作為作業(yè)。此活動主要是讓學(xué)生通過動手實(shí)踐,分工合作,近一步理解三角函數(shù)知識,以及從中體會學(xué)習(xí)數(shù)學(xué)的重要性,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和激情,增強(qiáng)團(tuán)隊(duì)意識。四、小結(jié):本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識上:2、 思想方法上:五、板書設(shè)計(jì)1、目標(biāo)展示在小黑板上2、自主學(xué)習(xí)的問題展示在小黑板上3、學(xué)生設(shè)計(jì)的方案示意圖在小組展示板上展示
一、說教材:等腰三角形是北師大版初中八年級下冊數(shù)學(xué)教材第一章第一節(jié)的教學(xué)內(nèi)容,本節(jié)是軸對稱圖形的應(yīng)用,是研究等腰三角形的開篇。通過本章節(jié)的學(xué)習(xí),可以豐富和加深學(xué)生對已學(xué)圖形的認(rèn)識,為以后的圖形學(xué)習(xí)和證明打好基礎(chǔ)。本節(jié)在編排上考慮學(xué)生的認(rèn)知規(guī)律,從學(xué)生容易接受的動手操作找規(guī)律開始到幾何畫板的驗(yàn)證再過渡到幾何證明與應(yīng)用。根據(jù)課程標(biāo)準(zhǔn),確定本節(jié)課的目標(biāo)為:【教學(xué)目標(biāo)】1.知識與能力 理解并掌握等腰三角形的定義,探索等腰三角形的性質(zhì);能夠用等腰三角形的知識解決相應(yīng)的數(shù)學(xué)問題.2.過程與方法通過動手操作、動態(tài)演示等方法,培養(yǎng)學(xué)生思考探究數(shù)學(xué)的能力;通過例題與練習(xí),提高學(xué)生添加輔助線解決問題的能力。3.情感、態(tài)度與價(jià)值觀 在探索等腰三角形性質(zhì)的過程中體會軸對稱圖形的美,感受數(shù)學(xué)與生活的聯(lián)系;在例題教學(xué)中,感受數(shù)學(xué)之美;培養(yǎng)學(xué)生分析解決問題的能力,使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣.
二、教法分析為了讓學(xué)生較好掌握本課內(nèi)容,本節(jié)課主要采用觀察法、討論法等教學(xué)方法,通過創(chuàng)設(shè)情境,使學(xué)生由淺到深,由易到難分層次對本節(jié)課內(nèi)容進(jìn)行掌握。三、學(xué)法分析本課要求學(xué)生通過自主地觀察、討論、反思來參與學(xué)習(xí),認(rèn)識和理解數(shù)學(xué)知識,學(xué)會發(fā)現(xiàn)問題并嘗試解決問題,在學(xué)習(xí)活動中進(jìn)一步提升自己的能力。四、教學(xué)過程創(chuàng)設(shè)問題情景,引入新課活動內(nèi)容:尋找不等的量 課本例一,例二設(shè)計(jì)目的:學(xué)生體會在現(xiàn)實(shí)生活中除了存在許多等量關(guān)系外,更多的是不等關(guān)系的存在,并通過感受生活中的大量不等關(guān)系,初步體會不等式是刻畫量與量之間關(guān)系的重要數(shù)學(xué)模型。經(jīng)歷由具體實(shí)例建立不等式模型的過程,進(jìn)一步發(fā)展學(xué)生的符號感與數(shù)學(xué)化的能力。課本例四,例五設(shè)計(jì)目的:培養(yǎng)學(xué)生數(shù)學(xué)抽象能力,提高把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。六.課堂小結(jié)體會 常量與常量間的不等關(guān)系變量與常量間的不等關(guān)系變量與變量間的不等關(guān)系