解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
一.學(xué)生情況分析對于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過量、折、拼的方法進(jìn)行了合情推理并得出了相關(guān)的推論。在小學(xué)認(rèn)識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。但在學(xué)生升入初中階段學(xué)習(xí)過推理證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明。現(xiàn)在的學(xué)生喜歡動(dòng)手實(shí)驗(yàn),操作能力較強(qiáng),但對知識的歸納、概括能力以及知識的遷移能力不強(qiáng)。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。
方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
(四)引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)(2)培養(yǎng)學(xué)生觀察--探索--抽象--概括的能力。2.教學(xué)安排(1)提出問題:通過驗(yàn)證這兩組分?jǐn)?shù)確實(shí)相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學(xué)生的觀察結(jié)果是什么,教師要順應(yīng)學(xué)生的思維,針對學(xué)生的觀察方法,進(jìn)行引導(dǎo)性評價(jià)①觀察角度的獨(dú)特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導(dǎo)層次一:你發(fā)現(xiàn)了1/2和2/4兩個(gè)數(shù)之間的這樣的規(guī)律,在這個(gè)等式中任意兩個(gè)數(shù)都有這樣的規(guī)律嗎?引導(dǎo)學(xué)生對1/2和4/8、2/4和4/8每組中兩個(gè)數(shù)之間規(guī)律的觀察。引導(dǎo)層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導(dǎo)層次三:用自己的話把你觀察到的規(guī)律概括出來。
6. 本題是一道實(shí)際應(yīng)用的題,可以結(jié)合生活實(shí)際舉例,在舉例中進(jìn)一步認(rèn)識分?jǐn)?shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個(gè)身高的 ; (讀作五分之三)表示把整個(gè)長江的干流看作單位“1”,受污染的部分占整個(gè)長江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分?jǐn)?shù)單位分別是: 、 、 、 、 。9. 本題有兩個(gè)知識點(diǎn):一是根據(jù)分?jǐn)?shù)的意義涂色,是把12個(gè)蘋果平均分成了2份,1份有6個(gè)蘋果; 是把12個(gè)蘋果平均分成了3份,1份有4個(gè)蘋果; 是把12個(gè)蘋果平均分成了4份,1份有3個(gè)蘋果; 是把12個(gè)蘋果平均分成了6份,1份有2個(gè)蘋果; 是把12個(gè)蘋果平均分成了12份,1份有1個(gè)蘋果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說隨著分母的增大,幾分之一所表示的蘋果個(gè)數(shù),從 的6個(gè)到 的1個(gè),相應(yīng)地在減少。
用米作單位,用分?jǐn)?shù)怎么表示呢?(1/10米)師:1/10米也可以寫成0.1米。師:請同學(xué)們看米尺,從0到30,從0到70,應(yīng)該是幾分米,十分之幾米?用小數(shù)怎樣表示呢?可先和同桌商量商量。學(xué)生同桌討論后反饋師根據(jù)反饋結(jié)果提問:請同學(xué)觀察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之間有什么關(guān)系?隨學(xué)生的回答出示1/10米=0.1米 3/10米=0.3米 7/10米=0.7米。再讓學(xué)生觀察上面的等式,四人小組討論你發(fā)現(xiàn)了什么?使學(xué)生通過討論明確:分母是10的分?jǐn)?shù)可以寫成一位小數(shù),一位小數(shù)表示十分之幾。2、 認(rèn)識兩位小數(shù) 、三位小數(shù)師:我們已經(jīng)知道了一位小數(shù)表示十分之幾,那么請同學(xué)猜一猜兩位小數(shù)與什么樣的分?jǐn)?shù)有關(guān)?三位小數(shù)與什么樣的分?jǐn)?shù)有關(guān)?(具體的步驟和前面相似)讓學(xué)生根據(jù)一位小數(shù)表示十分之幾,猜想出兩位小數(shù)和什么樣的分?jǐn)?shù)有關(guān)?有意識地促進(jìn)“遷移”,使學(xué)生在學(xué)會的同時(shí)學(xué)習(xí)能力也得到提高。關(guān)于計(jì)數(shù)單位的教學(xué)我個(gè)人認(rèn)為還是放到52頁小數(shù)數(shù)位順序表這里教學(xué)比較妥當(dāng)。
(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對對應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對對應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡便.三、板書設(shè)計(jì)
說教材>是人教版小學(xué)數(shù)學(xué)五年級上冊第五單元P64的內(nèi)容。在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)認(rèn)識了等式與方程,這便為本節(jié)課的學(xué)習(xí)(構(gòu)建等量關(guān)系的數(shù)學(xué)模型)打下一定的基礎(chǔ),同時(shí)也為以后解簡單方程埋下伏筆,因此本節(jié)課內(nèi)容也是本章中的一個(gè)重點(diǎn)。基于本節(jié)內(nèi)容的特點(diǎn),我將本節(jié)課的教學(xué)目標(biāo)確定為:1.知識與技能:理解等式的性質(zhì)并用語言表述,能利用等式的性質(zhì)解決簡單問題;2.過程與方法:在實(shí)驗(yàn)操作、討論、歸納等活動(dòng)中,經(jīng)歷探究等式基本性質(zhì)的過程;3.情感態(tài)度與價(jià)值觀:使學(xué)生積極參與數(shù)學(xué)活動(dòng),體驗(yàn)探索等式基本性質(zhì)的挑戰(zhàn)性與得出數(shù)學(xué)結(jié)論的確定性。教學(xué)重難點(diǎn):了解等式的基本性質(zhì),并能簡單運(yùn)用。說學(xué)情:小學(xué)五年級的學(xué)生已具備一定的思考能力,又樂于動(dòng)手操作、合作探究。因此教學(xué)中我引導(dǎo)學(xué)生認(rèn)真觀察-獨(dú)立思考-自主探究-合作交流,遵循由淺入深,由具體到抽象的規(guī)律,為學(xué)生創(chuàng)設(shè)一個(gè)和諧的學(xué)習(xí)環(huán)境,讓孩子們在探索中交流、感受、理解和概括出等式的基本性質(zhì)。
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
【活動(dòng)準(zhǔn)備】 1.創(chuàng)設(shè)“鐘表展覽館”的教學(xué)環(huán)境。 2.人手一只可以撥動(dòng)的小時(shí)鐘。 3.反映幼兒一日生活內(nèi)容的圖片(起床、上學(xué)、午飯、午睡等),時(shí)鐘演變過程圖片。 4.可以用來自制鐘面的有關(guān)材料(如長短針、1~12的數(shù)字、各種形狀和造型的硬板紙或吹塑紙若干)。【活動(dòng)過程】一、創(chuàng)設(shè)嘗試情境,激發(fā)幼兒嘗試欲望 邊聽“在鐘表店”里的音樂,邊把幼兒帶進(jìn)“鐘表展覽館”,引導(dǎo)幼兒欣賞各種各樣的鐘表,激發(fā)幼兒學(xué)習(xí)的興趣。 師:請小朋友仔細(xì)看看、找找、比比這些鐘表有什么地方是相同的?再想想,工人叔叔和阿姨為什么要設(shè)計(jì)、制造這些鐘表? 二、觀察活動(dòng) 通過觀察活動(dòng)比較鐘表上時(shí)針、分針的不同,認(rèn)識12個(gè)數(shù)字以及數(shù)字的排列位置。 提問: 1.每只鐘面上都有什么?(出示3只不同形狀的時(shí)鐘,幼兒找出鐘面上都有兩根針和1~12的數(shù)字) 2.比比看,兩根針什么地方不一樣?(長短、粗細(xì)之分)它們的名稱叫什么?(了解時(shí)針、分針的名稱) 3.鐘面上的數(shù)字排列位置是怎樣的?(認(rèn)識典型的幾個(gè)數(shù)字位置12、9、3、6)
初讀課文,學(xué)習(xí)字詞。 1.提出讀書要求:默讀課文,一邊讀一邊畫出不認(rèn)識的字和不理解的詞,并借助詞典等學(xué)習(xí)工具書理解?! ?.教師檢查學(xué)生學(xué)習(xí)情況。 ?。?)檢查生字讀音。 小丘( qiū)渲染(xuàn )迂回( yū)蒙古包( měng ) 襟飄帶舞( jīn )鄂溫克(è) ?。?)指導(dǎo)易混淆的字?! 敖蟆笔亲笥医Y(jié)構(gòu),左邊是“衤”,與衣服有關(guān),表示衣服胸前的部分?! 皾笔亲笥医Y(jié)構(gòu),右邊下面是“止”,不能寫成“上”。 “裳”下面是“衣”,與衣服有關(guān)?! 拔ⅰ保褐虚g部分不能少一橫。 ?。?)理解較難的詞語?! 、俾?lián)系上下文理解詞語?! 〔菰闲熊囀譃⒚?,只要方向不錯(cuò),怎么走都可以?! 盀⒚摗钡囊馑际牵簽t灑自然,不拘束。這個(gè)詞語反映了草原的廣闊無邊。 ?、诶斫狻敖箫h帶舞”一詞的意思,可以出示蒙古族鮮艷的服裝來分析,意思是:衣襟和裙帶隨風(fēng)舞動(dòng)?! 、邸按渖鳌币辉~可以從難字入手理解,比如“欲”在這里表示“將要”的意思,“翠色欲流”就是綠得太濃了,將要流下來,寫出了草原的綠,是充滿生命力的。 ?、芏鯗乜耍何覈贁?shù)民族之一,聚居在內(nèi)蒙古自治區(qū)的東北部。
教材簡析 《灰雀》這篇課文記敘了列寧在莫斯科郊外養(yǎng)病期間愛護(hù)灰雀的故事,反映了列寧愛鳥,更愛誠實(shí)的孩子。 全文共13個(gè)自然段。第1自然段講列寧在郊外養(yǎng)病期間,每天都到公園散步,他非常喜歡公園里那:只灰雀。第2—10自然段講有一天,列寧發(fā)現(xiàn)那只胸脯深紅的灰雀不見,以為它凍死了,感到很惋惜。小男孩不敢告訴列寧灰雀沒有死,只是堅(jiān)定地說,灰雀會飛回來的。第11~13自然段講第二天,列寧果然又看見了那只灰雀,但他沒有再問那個(gè)男孩,因?yàn)樗呀?jīng)知道男孩是誠實(shí)的?! ≌n文以人物對話為主線,既寫出了列寧對孩子的教育過程,又寫了小男孩心理認(rèn)識過程。人物的內(nèi)心活動(dòng)外化為語言,二者相互交錯(cuò),推動(dòng)情節(jié)發(fā)展,并有機(jī)地融合在一起。
一、說教材1、教材所處的地位和作用:《比的基本性質(zhì)》是小學(xué)數(shù)學(xué)人教版六年級上冊第三單元第三小節(jié)比和比的應(yīng)用的第二課時(shí)。它是在學(xué)生學(xué)習(xí)商不變性質(zhì)、分?jǐn)?shù)的基本性質(zhì)、比的意義、比和除法的關(guān)系、比和分?jǐn)?shù)的關(guān)系的基礎(chǔ)上組織教學(xué)的。比的基本性質(zhì)是一節(jié)概念課的教學(xué),它跟分?jǐn)?shù)的基本性質(zhì)、商不變性質(zhì)實(shí)際上是同一道理的。所以本節(jié)課主要是處理新舊知識間的聯(lián)系,在鞏固舊知識的基礎(chǔ)上進(jìn)入到學(xué)習(xí)新知識。教材內(nèi)容滲透著事物之間是普遍聯(lián)系和互相轉(zhuǎn)化的辯證唯物主義觀點(diǎn)。學(xué)生理解并掌握比的基本性質(zhì),不但能加深對商不變性質(zhì)、分?jǐn)?shù)的基本性質(zhì)、比的意義、比和分?jǐn)?shù)、比和除法等知識的理解與掌握,而且也為以后學(xué)習(xí)比的應(yīng)用,比例知識,正、反比例打好基礎(chǔ)。
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
舉行“民族風(fēng)情”展示會 我國是一個(gè)多民族的大家庭。五十六個(gè)民族,五十六朵花。不同的的民族有不同的服飾,更有不同的風(fēng)俗。下面我們舉行一個(gè)“少數(shù)民族風(fēng)情”展示會,請你展示自己找到的有關(guān)圖片,介紹自己了解的少數(shù)民族的情況。 學(xué)生展示介紹,教師提示學(xué)生著重介紹少數(shù)民族的服飾特征、生活習(xí)俗?! 《?視學(xué)生介紹情況,教師利用課后資料袋中的圖片,補(bǔ)充介紹課文中涉及的傣族、景頗族、阿昌族、德昂族等少數(shù)民族的情況。 三.評選最佳學(xué)生,頒發(fā)小獎(jiǎng)品?! 〗沂菊n題,范讀課文?! ?.在我國西南邊疆地區(qū),有好多民族聚居在一起,共同生活,和睦相處。不同民族的孩子們也在一所學(xué)校共同學(xué)習(xí)。就有這樣的一所民族小學(xué),大家愿意不愿意去參觀一下? 2.板書課題:我們的民族小學(xué)?! ?.教師配樂范讀。選擇具有云貴民族風(fēng)情的樂曲,如《小河淌水》、《蝴蝶泉邊》、《有一個(gè)美麗的地方》等配樂。