提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

簡約語文教師求職簡歷模板

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動(dòng)腦思考 探索新知 在單位圓(如上圖)中,設(shè)向量、與x軸正半軸的夾角分別為和,則點(diǎn)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導(dǎo)公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1)  (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 25

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動(dòng)腦思考 探索新知 如圖8-12所示,兩條相交直線的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點(diǎn)的坐標(biāo). 觀察圖8-13,直線、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個(gè)正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時(shí),兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時(shí)稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大小(精確到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例3 作出函數(shù)在一個(gè)周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個(gè)關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對應(yīng)五個(gè)關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個(gè)周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 15

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對應(yīng)的邊長分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問題中,經(jīng)常需要計(jì)算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上海→北京,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    一、定義:  ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開式;上述二項(xiàng)展開式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開式的通項(xiàng),用表示;叫做二項(xiàng)展開式的通項(xiàng)公式.二、二項(xiàng)展開式的特點(diǎn)與功能1. 二項(xiàng)展開式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開式的功能注意到二項(xiàng)展開式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問題的原始依據(jù).又注意到在的二項(xiàng)展開式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項(xiàng)式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.1《計(jì)數(shù)原理》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.1《計(jì)數(shù)原理》教學(xué)設(shè)計(jì)

    授課 日期 班級(jí)16高造價(jià) 課題: §10.1 計(jì)數(shù)原理 教學(xué)目的要求: 1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理的概念和區(qū)別; 2.能利用兩個(gè)原理分析和解決一些簡單的應(yīng)用問題; 3.通過對一些應(yīng)用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點(diǎn)、難點(diǎn): 兩個(gè)原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書設(shè)計(jì)或授課提綱 §10.1 計(jì)數(shù)原理 1、加法原理 2、乘法原理 3、兩個(gè)原理的區(qū)別

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.2《概率》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.2《概率》教學(xué)設(shè)計(jì)

    課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時(shí)數(shù)2授課班級(jí) 授課時(shí)間 教學(xué)地點(diǎn) 背景分析正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動(dòng)過的,目的就在于幫助學(xué)生對這一知識(shí)的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識(shí)目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 1 會(huì)用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會(huì)用基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【實(shí)驗(yàn)】 商店進(jìn)了一批蘋果,小王從中任意選取了10個(gè)蘋果,編上號(hào)并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號(hào)12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計(jì)出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 在統(tǒng)計(jì)中,所研究對象的全體叫做總體,組成總體的每個(gè)對象叫做個(gè)體. 上面的實(shí)驗(yàn)中,這批蘋果的質(zhì)量是研究對象的總體,每個(gè)蘋果的質(zhì)量是研究的個(gè)體. 講解 說明 引領(lǐng) 分析 理解 記憶 帶領(lǐng) 學(xué)生 分析 20*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例1 研究某班學(xué)生上學(xué)期數(shù)學(xué)期末考試成績,指出其中的總體與個(gè)體. 解 該班所有學(xué)生的數(shù)學(xué)期末考試成績是總體,每一個(gè)學(xué)生的數(shù)學(xué)期末考試成績是個(gè)體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個(gè)體. 說明 強(qiáng)調(diào) 引領(lǐng) 觀察 思考 主動(dòng) 求解 通過例題進(jìn)一步領(lǐng)會(huì) 35

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.4《用樣本估計(jì)總體》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.4 用樣本估計(jì)總體 *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 初中我們曾經(jīng)學(xué)習(xí)過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個(gè)組內(nèi)的個(gè)數(shù). 【知識(shí)鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機(jī)抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點(diǎn),將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設(shè)定分點(diǎn)數(shù)值時(shí)需要考慮分點(diǎn)值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計(jì)頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計(jì)3030 介紹 質(zhì)疑 引領(lǐng) 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學(xué)生思考 0 10*動(dòng)腦思考 探索新知 【新知識(shí)】 各組內(nèi)數(shù)據(jù)的個(gè)數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個(gè)數(shù)之比叫做該組的頻率. 計(jì)算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計(jì)301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應(yīng)矩形的面積. 【想一想】 各小矩形的面積之和應(yīng)該等于1.為什么呢? 【新知識(shí)】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計(jì)總體中某事件發(fā)生的概率.樣本選擇得恰當(dāng),這種估計(jì)是比較可信的. 如上所述,用樣本的頻率分布估計(jì)總體的步驟為: (1) 選擇恰當(dāng)?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計(jì)算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點(diǎn)并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計(jì)總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 25

  • 人教版高中語文必修4《語言生活的歷史進(jìn)程》教案

    人教版高中語文必修4《語言生活的歷史進(jìn)程》教案

    交談時(shí)雙方的空間距離也有一定講究。和朋友談話、和陌生人談話、和異性談話、招呼長者和上級(jí),都需要有一個(gè)合適的距離。如果上級(jí)故意“縮減”與下級(jí)人員通常談話時(shí)的距離,那是表示對下級(jí)的關(guān)切。說話的時(shí)候需要一面想,一面說,為了控制說話的主動(dòng)權(quán),免得被別人插人、打斷,人們可以使用“唔”“啊”之類的音節(jié),表示“話還沒有說完,你別著急”之類的意思??瞻滓脖硎疽馑?,在說唱藝術(shù)中,什么時(shí)候停頓,停多久,都有講究,以便使交際更有成效。這就是說,空間和時(shí)間的因素也在交際中得到了適當(dāng)?shù)倪\(yùn)用。所以,各種伴隨動(dòng)作也是交際的工具。它們一般都是在語言的基礎(chǔ)上產(chǎn)生的。即使像“察顏觀色”這一類特定的交際方式,也必須有語言的交際為基礎(chǔ),預(yù)先有了一定的了解,對方才能領(lǐng)會(huì)。總之,在上述的種種交際工具當(dāng)中,身勢等伴隨動(dòng)作是非語言的交際工具;旗語之類是建立在語言、文字基礎(chǔ)之上的輔助性交際工具;文字是建立在語言基礎(chǔ)之上的一種最重要的輔助交際工具;

  • 人教版高中語文必修1《燭之武退秦師》教案

    人教版高中語文必修1《燭之武退秦師》教案

    四、講讀第一段(10分鐘)1.抽生朗讀本段,注意生字詞讀音。2.講析本段譯釋由學(xué)生完成,師只作扼要補(bǔ)糾和簡要分析。分析內(nèi)容包括伏筆手法和語句深意,全段作用。3.讓學(xué)生齊讀全段。4.處理練習(xí)一之中的第1小題,要求學(xué)生試譯回答,然后指導(dǎo)學(xué)生背誦本段。五、講讀第二段(15分鐘)1.抽生朗讀本段,注意生字詞讀音。2.講析本段①重點(diǎn)講析三個(gè)文言詞“若”、“之”、“辭”的用法和人物對話。②字詞句的理解仍然注意發(fā)揮學(xué)生的能動(dòng)性,讓他們完成為主,師糾補(bǔ)為輔。對要求掌握的三個(gè)文言詞的用法要板書列于黑板上,對話部分要讓學(xué)生試作語氣練習(xí)。③小結(jié)的內(nèi)容包括情節(jié)的曲折性、寫法的詳略和表達(dá)的特點(diǎn)。3.生齊讀本段,然后處理相關(guān)練習(xí)。

  • 人教版高中語文《燭之武退秦師》教案2篇

    人教版高中語文《燭之武退秦師》教案2篇

    【教學(xué)目標(biāo)】1.學(xué)習(xí)本文精彩的人物語言——說理透辟,善于辭令,以及起伏跌宕,生動(dòng)活潑的情節(jié)。2.掌握文章中出現(xiàn)的古漢語常識(shí),注意多義詞在不同語境中的不同意義和用法。3.了解燭之武說服秦伯的方法——善于利用矛盾,采取分化瓦解的方法,認(rèn)識(shí)燭之武機(jī)智善辯的外交才能?!窘虒W(xué)重點(diǎn)】1.燭之武人物形象的把握。2.波瀾起伏,生動(dòng)活潑的情節(jié)。【教學(xué)難點(diǎn)】通過學(xué)習(xí)本課,使學(xué)生對《左傳》的語言特點(diǎn)有所了解。【教學(xué)過程】第一課時(shí)課前預(yù)習(xí):(1)借助工具書,通讀原文。(2)參考有關(guān)資料,對《左傳》在先秦文學(xué)史中的地位及《左傳》的語言特色有所了解。(3)初步了解故事情節(jié),特別注意對燭之武這個(gè)中心人物的把握。(4)畫出自己不理解的問題及難點(diǎn)。

  • 人教部編版語文九年級(jí)下冊出師表教案

    人教部編版語文九年級(jí)下冊出師表教案

    2.分析寫作特點(diǎn)。本文是如何把議論、抒情和敘事融為一體的?預(yù)設(shè) 本文是奏章,內(nèi)容是作者出師前向后主劉禪陳述意見,提出修明政治、興復(fù)漢室的主張。因此,全文以議論為主,在議論中融以敘事和抒情,以做到對劉禪曉之以理、動(dòng)之以情而達(dá)到勸諫的目的。論述切中要害,分析透辟,針對性強(qiáng);寓情于議,情理交融,言辭懇切,說服力強(qiáng)。敘事,寓情于事,委婉動(dòng)人,感情真摯。所敘之事如推薦賢才,講身世,談經(jīng)歷,都是為議論服務(wù),使他對劉禪提出的建議與要求有理有據(jù),更能使人信服。 結(jié)束語:諸葛亮知恩圖報(bào),忠心為國。他有高度的責(zé)任感、使命感,他為國家鞠躬盡瘁,死而后已,當(dāng)我們吟誦“出師未捷身先死,長使英雄淚滿襟”的詩句時(shí),會(huì)深深地體味出杜甫對諸葛亮的仰慕和惋惜之情;當(dāng)我們解讀“出師一表真名世,千載誰堪伯仲間”這兩句詩時(shí),更是深深地被陸游滿腔豪情所感染。四、布置作業(yè)

  • 新員工代表講話發(fā)言稿模板3篇

    新員工代表講話發(fā)言稿模板3篇

    在部門領(lǐng)導(dǎo)和老員工的親切關(guān)懷和照顧下,我們開始從剛剛畢業(yè)的學(xué)生慢慢的熟悉業(yè)務(wù)知識(shí),逐漸融入這個(gè)群體,沐浴著勤勉細(xì)致的工作作風(fēng),感染著誠實(shí)謙遜的為人處事之道,感受著“底蘊(yùn)厚實(shí)而又朝氣蓬勃的獨(dú)特企業(yè)文化。在這個(gè)過程中,我們已經(jīng)從最初的激動(dòng)和興奮中冷靜下來,開始以主人翁的心態(tài)積極思考我們的優(yōu)勢和不足,關(guān)心我們的內(nèi)部改革、體制創(chuàng)新,了解我們的營銷理念和市場競爭力,并開始認(rèn)真思考如何在我們發(fā)展的整體態(tài)勢下,定位自己的目標(biāo),發(fā)掘個(gè)人的潛力。

  • 標(biāo)準(zhǔn)版離婚協(xié)議書參考模板

    標(biāo)準(zhǔn)版離婚協(xié)議書參考模板

    2、債務(wù)處理 ?。?)夫妻關(guān)系存續(xù)期間,男方為夫妻共同生活而進(jìn)行的項(xiàng)目投資所產(chǎn)生的對外債務(wù)為 萬元(大寫: 萬元整)。此部分債務(wù)雙方確認(rèn)為共同債務(wù),女方對此部分債務(wù)予以確認(rèn),并不提出異議,承諾由雙方共同償還?! 。?)雙方共同確認(rèn),女方對外無共同債務(wù),男方對外亦無其他債務(wù)。夫妻共同債務(wù)范圍以本次協(xié)議確認(rèn)的為準(zhǔn),如有未納入本協(xié)議的債務(wù),則不屬于夫妻共同債務(wù),男女雙方承諾各自償還。債權(quán)人主張權(quán)利的,由債務(wù)承載方各自負(fù)責(zé)償還。

  • 租房合同:個(gè)人租房合同模板

    租房合同:個(gè)人租房合同模板

    第十條:租房合同終止因自然災(zāi)害及其他不可抗力事件,使大樓的全部或一部分損壞、破損而導(dǎo)致乙方租賃場所不能使用時(shí),本合同自然終止。

上一頁123...111213141516171819202122下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!