2、復(fù)習(xí)5的組成,并知道4 1、3 2及前后位置互換都等于5。 3、進(jìn)一步認(rèn)識理解“ ”、 “=”號的含義。 4、在活動中,體驗游戲的愉悅,提高幼兒學(xué)習(xí)數(shù)學(xué)的興趣?;顒訙?zhǔn)備: 1、背景圖一副,動物卡片若干。 2、教具:數(shù)量不等的物體圖片,1—5數(shù)字,加、減、等號各一個。 3、學(xué)具:數(shù)量不等的物體圖片(幼兒人手一份)?;顒舆^程:(一)復(fù)習(xí)5的組成 幼兒人手一份卡片,教師引導(dǎo)一起共同復(fù)習(xí)5的組成。
2.能聽口述應(yīng)用題,在算盤上復(fù)習(xí)4以內(nèi)的加減混合運算,并能完整說出算式。 3.在游戲和操作中練習(xí)看數(shù)撥珠,看珠報數(shù)?;顒訙?zhǔn)備:1.蘋果圖及標(biāo)記圖,數(shù)卡1、2、3、4、5若干。 2.每人一張分合卡、一支記號筆、5個動物玩具。 3.四位數(shù)的電話號碼若干?;顒舆^程:1. 出示數(shù)卡5,今天數(shù)字5也到幼兒園來了,它說要到算盤上找到它的珠寶寶,你知道是哪顆珠寶寶嗎? 幼兒回答,教師小結(jié);哦,原來上珠寶寶就是5呀,那一顆下珠是幾呀?三顆下珠呢?現(xiàn)在我們知道了,下珠寶寶1、2、3、4都比5小,現(xiàn)在數(shù)字5要來考考小朋友了,請你把5分成兩份,看看誰的方法又多又準(zhǔn)確。教師觀察幼兒操作情況,并指導(dǎo)幼兒將分成結(jié)果記錄在分合卡上。
舉行“民族風(fēng)情”展示會 我國是一個多民族的大家庭。五十六個民族,五十六朵花。不同的的民族有不同的服飾,更有不同的風(fēng)俗。下面我們舉行一個“少數(shù)民族風(fēng)情”展示會,請你展示自己找到的有關(guān)圖片,介紹自己了解的少數(shù)民族的情況?! W(xué)生展示介紹,教師提示學(xué)生著重介紹少數(shù)民族的服飾特征、生活習(xí)俗。 二.視學(xué)生介紹情況,教師利用課后資料袋中的圖片,補(bǔ)充介紹課文中涉及的傣族、景頗族、阿昌族、德昂族等少數(shù)民族的情況?! ∪?評選最佳學(xué)生,頒發(fā)小獎品?! 〗沂菊n題,范讀課文?! ?.在我國西南邊疆地區(qū),有好多民族聚居在一起,共同生活,和睦相處。不同民族的孩子們也在一所學(xué)校共同學(xué)習(xí)。就有這樣的一所民族小學(xué),大家愿意不愿意去參觀一下? 2.板書課題:我們的民族小學(xué)。 3.教師配樂范讀。選擇具有云貴民族風(fēng)情的樂曲,如《小河淌水》、《蝴蝶泉邊》、《有一個美麗的地方》等配樂。
(二)過程與方法: 1、能夠?qū)τ绊憯[的快慢的因素進(jìn)行假設(shè)并設(shè)計實驗進(jìn)行驗證?! ?、能夠測量在單位時間內(nèi)擺動的次數(shù)?! ?三)情感態(tài)度價值觀: 1、體驗到對待科學(xué)研究要持嚴(yán)謹(jǐn)?shù)膽B(tài)度?! ?、體驗合作、發(fā)現(xiàn)擺的規(guī)律的樂趣。
1、使學(xué)生了解學(xué)習(xí)本單元的意義,歌頌愛心,培育愛心?! ?、能自主學(xué)唱歌曲并設(shè)計歌曲的演唱情緒,力度等;合唱時聲部和諧、聲音優(yōu)美。 3、能注意歌曲中段落的劃分,并通過歌聲表達(dá)出來?! 窘虒W(xué)過程】 導(dǎo)入 1987 年的中央電視臺春節(jié)聯(lián)歡晚會上來了兩位客人,一位是善良的家庭女主人,一位是身患白血病的小保姆,姑娘在女主人和鄰里的關(guān)懷、幫助下戰(zhàn)勝了病魔,他們共同述說著這一動人的故事,隨即《愛的奉獻(xiàn)》歌聲響起,感動了在場的觀眾和所有的電視觀眾,歌曲中的"只要你獻(xiàn)出一點愛,世界將變成美好的人間"早已唱遍了了全國。
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
探究點二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流。活動二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價值.
三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達(dá)B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
三、作出速度-時間圖像(v-t圖像)1、確定運動規(guī)律最好辦法是作v-t圖像,這樣能更好地顯現(xiàn)物體的運動規(guī)律。2、x y x1 x2 y2 y1 0討論如何在本次實驗中描點、連線。(以時間t為橫軸,速度v為縱軸,建立坐標(biāo)系,選擇合適的標(biāo)度,把剛才所填表格中的各點在速度-時間坐標(biāo)系中描出。注意觀察和思考你所描畫的這些點的分布規(guī)律,你會發(fā)現(xiàn)這些點大致落在同一條直線上,所以不能用折線連接,而用一根直線連接,還要注意連線兩側(cè)的點數(shù)要大致相同。)3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認(rèn)為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(biāo)(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標(biāo)系中,直線的斜率
3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認(rèn)為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(biāo)(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標(biāo)系中,直線的斜率四、實踐與拓展例1、在探究小車速度隨時間變化規(guī)律的實驗中,得到一條記錄小車運動情況的紙帶,如圖所示。圖中A、B、C、D、E為相鄰的計數(shù)點,相鄰計數(shù)點的時間間隔為T=0.1s。⑴根據(jù)紙帶上的數(shù)據(jù),計算B、C、D各點的數(shù)據(jù),填入表中。
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學(xué) 目 標(biāo)知識目標(biāo):1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關(guān)系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應(yīng) 技能目標(biāo):1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結(jié)合圖像寫出一元二次不等式的解集 情感目標(biāo):體會知識之間的相互關(guān)聯(lián)性,體會數(shù)形結(jié)合思想的重要性教學(xué) 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關(guān)系 難點: 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應(yīng)的部分教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結(jié)合,相關(guān)知識點融會貫通,數(shù)形結(jié)合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學(xué)生自行推出結(jié)論。
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點】 一元二次不等式的解法?!窘虒W(xué)設(shè)計】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力?!菊n時安排】 2課時(90分鐘)【教學(xué)過程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當(dāng)y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標(biāo)是什么?(3)當(dāng)y<0時,x的取值范圍是什么?總結(jié):由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
2、培養(yǎng)幼兒的觀察能力、動手能力。三、 活動準(zhǔn)備:1、 兩個蛋殼小娃娃、一籃玩具、一桶水、一個布娃娃,蘋果、梨、柑橘各一個。2、 每個幼兒一架自制天平稱、一個小籃(內(nèi)裝玻璃珠、木珠、積塑等)、記錄紙、筆等。四、 活動過程:1、教師出示兩個蛋殼小娃娃:“今天,老師給小朋友帶來了兩個小娃娃,它們是用什么做的?(蛋)這兩個小娃娃,一個是用蛋做的,一個是用蛋殼做的。請小朋友想辦法分辨出哪一個是蛋?”請一幼兒上前分辨,并說出方法。教師小結(jié):“剛才這方法叫惦一惦?!?/p>