素養(yǎng)提升作文中怎樣運用“以小見大”的寫作手法(1)以小人物見大。這里的“小人物”是指在社會上不出名、沒有影響的人。以小人物見大,即以生活中平凡的小人物為敘寫對象,通過塑造小人物的形象,揭示其閃光的品質(zhì),彰顯其偉大的人格,折射出底層人民的光芒,喻人以大道理,動人以大感情,從而起到激勵、感化讀者的大作用。(2)以小事見大??梢酝ㄟ^敘寫生活中極其平常的小事闡述一個大的道理。文化常識典故故事——君子之交“君子之交”語出《莊子·山木》:“且君子之交淡若水,小人之交甘若醴;君子淡以親,小人甘以絕?!本又唬馑际琴t者之間的交情,平淡如水,不尚虛華。唐貞觀年間,薛仁貴尚未得志之前,與妻子住在一個破窯洞中,衣食無著落,全靠王茂生夫婦接濟。后來,薛仁貴參軍,在跟隨唐太宗李世民御駕東征時,立下汗馬功勞,被封為“平陽郡公”。一登龍門,身價百倍,前來送禮祝賀的文武大臣絡繹不絕,可都被薛仁貴婉言謝絕了。
尊敬的老師、親愛的同學們:大家早上好!我是四年級七班的張笑寒。今天國旗下講話的題目是《做一個有道德的人》。同學們,你們知道9月20日是什么日子嗎?讓我來告訴你們吧!是“公民道德宣傳日”。未成年人是祖國未來的建設者,是社會主義事業(yè)的接班人!我們肩負使命!我們?nèi)沃氐肋h!古往今來,滄海桑田,雖時光流逝,但美德未減。驍勇善戰(zhàn)的霍去病,毅然隱世的陶淵明,慷慨悲歌的文天祥,精忠報國的岳飛,虎門銷煙的林則徐,拒領“救濟糧”的朱自清……再看看新時代那些當之無愧的道德英雄:“雷鋒傳人”——郭明義,舟曲之子——王偉,警界保爾——孫炎明……他們是民族的脊梁,他們是道德的旗幟,他們是人格的豐碑。意大利詩人但丁說過:“一個知識不全的人,可以用道德去彌補,而一個道德不全的人,卻難以用知識去彌補?!痹诩依铮屛覀?yōu)槊β盗艘惶斓母改概跎弦槐瓱岵?在學校,讓我們?yōu)閷W習困難的同學把疑問解答;在車上,讓我們扶著年邁的老人坐下。只要我們從現(xiàn)在做起,從小事做起,我們就會成為有道德的好少年。同學們,讓道德的種子在我們心里生根,發(fā)芽!讓我們一起努力,加油吧!謝謝大家!
1、導語:同學們,在與人相處,與人交流的過程中,文明用語不可少。我們在不同的地點,不同的場合正確使用文明用語,有助于我們與人交往。尤其是對于我們學生來說,如果經(jīng)常使用文明用語,那么人人都會喜歡我們,夸獎我們。 2、講故事:一個年輕人去張村,可他不認識去張村的路。半路上遇見一位老人,年輕人喊道“喂,老頭兒,這里離張村有多遠?”老頭脫口而出:“無禮!”年輕人足足走了五里路,一直沒有看見有叫張村的地方。年輕人停下來想了又想,似乎悟出了什么。年輕人的行為給自己帶來了什么結果?(小結)什么是禮貌,它與尊重的關系。 你想做個懂禮貌的孩子嗎?要想懂禮貌必須先知道什么? 3、學生說出常用的文明語言及使用的場合和對象。(小組討論,選代表發(fā)言) 4、考察情況,即興表演。同學們說得都很不錯,現(xiàn)在我們就來比一比,哪一組是文明禮貌大組。必須認真聽老師提出的問題,然后派人表演,表演合格就能領到通行證,得到通行證最多的組就是文明禮貌大組。
第二課《怎樣保護我們的眼睛》 一、課題的確定背景 每當我們走進校園,總會看到一個個“小眼鏡”在校園里走來走去;每當我們走進教室,也會看到許許多多的“小眼鏡”坐在教室里學習。透過這“小眼鏡”,我們驚訝,我們震撼,我們傷感!青少年是祖國的未來,他們需要通過眼睛觀察和感知美麗的大千世界,為了讓學生清楚造成眼睛近視的原因,了解眼睛近視給自己的學習生活帶來的危害,力求通過此課題的研究,使之認識到從小保護眼睛的重要性,提高學生的護眼意識,更好地為學生的健康成長服務。
請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導學生從上述實例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個條件?三、 鞏固練習:1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結:1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習題4.2
解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設可知自變量x的取值范圍為0<x<85.方法總結:反比例函數(shù)的自變量取值范圍是全體非零實數(shù),但在解決實際問題的過程中,自變量的取值范圍要根據(jù)實際情況來確定.解題過程中應該注意對題意的正確理解.三、板書設計反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應關系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達式:待定系數(shù)法建立反比例函數(shù)的模型結合實例引導學生了解所討論的函數(shù)的表達形式,形成反比例函數(shù)概念的具體形象,從感性認識到理性認識的轉(zhuǎn)化過程,發(fā)展學生的思維.利用多媒體創(chuàng)設大量生活情境,讓學生體驗數(shù)學來源于生活實際,并為生活實際服務,讓學生感受數(shù)學有用,從而培養(yǎng)學生學習數(shù)學的興趣.
2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設計
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結、提高。(結合板書小結)今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數(shù)就確定了。
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經(jīng)歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質(zhì).活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數(shù)學結論的能力;(2)學生對于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應為黃金比,此題應根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設和解決過程,體會黃金分割的文化價值,在應用中進一步理解相關內(nèi)容,在實際操作、思考、交流等過程中增強學生的實踐意識和自信心.感受數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增進數(shù)學學習的興趣.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結:矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(2)如果對應著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設兩個矩形相似,不妨設小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結:因為矩形的四個角均是直角,所以在有關矩形相似的問題中,只需看對應邊是否成比例,若成比例,則相似,否則不相似.
目標導學一:了解作者,了解作品吳敬梓,字敏軒,號粒民,晚年又號文木老人,安徽全椒人,清代小說家。吳敬梓出生于一個科甲鼎盛的縉紳世家,其曾祖父和祖父兩代人中,共出了六名進士。受家族的影響,他少時熱衷科舉,早年入學為秀才,二十九歲時參加鄉(xiāng)試,卻因“文章大好人大怪”而遭黜落。不過,讀書生活使他顯露出孤標脫俗的叛逆?zhèn)€性。特別是在他的父親去世后,近房中不少人覬覦遺產(chǎn),使他得以認清科甲世家的虛偽和卑劣。吳敬梓性情豁達,不善治家,不上十年,就將遺產(chǎn)消耗一空。經(jīng)歷了由富到貧之變后,他飽嘗了世態(tài)炎涼,體察到士大夫階層的種種墮落與無恥,看清了清王朝統(tǒng)治下政治的腐敗與社會的污濁。正因為其個人經(jīng)歷,使他對當時儒生的生活和精神狀態(tài)之弊病有了深刻的了解,寫下了著名的諷刺小說《儒林外史》。
目標導學四:賞析作品,把握詩歌藝術特色1.這首詩在結構上共分兩節(jié),請簡要說說兩節(jié)詩歌各有什么特點及它們之間的內(nèi)在聯(lián)系。明確:詩的第一節(jié)是從虛擬的視角,即從鳥兒的視角去想象,去表現(xiàn)鳥兒對土地的忠誠與摯愛,顯得形象含蓄;第二節(jié)卻換成實寫的視角,即從作者自我的視角去實寫自己“常含淚水的眼睛”,傾訴自己對土地的“深沉”之愛,是直抒胸臆。這樣,虛境和實境的結合與對應,構筑了全詩內(nèi)在完整的藝術空間;結果與原因的關聯(lián)與對照,又構成了支撐全詩的內(nèi)在邏輯結構。此外,從手法特點上看,第一節(jié)用的是比,是想象的境界;第二節(jié)則是直抒胸臆的寫實。全詩由前面蒙太奇鏡頭式的畫面暗示轉(zhuǎn)到了后面作者的直接指點,以一個強有力的情感抒發(fā)結束了全篇,從而把注意力引到一個濃郁的情感氛圍中,再一次感受到作者對土地的忠貞與摯愛。