【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
觀察實(shí)驗(yàn)視頻實(shí)驗(yàn)驗(yàn)證師:其實(shí)大家完全可以利用身邊的器材來驗(yàn)證。實(shí)驗(yàn)1、用彈簧秤掛上鉤碼,然后迅速上提和迅速下放?,F(xiàn)象:在鉤碼被迅速上提的一瞬間,彈簧秤讀數(shù)突然變大;在鉤碼被迅速下放的一瞬間,彈簧秤讀數(shù)突然變小。師:迅速上提時(shí)彈簧秤示數(shù)變大是超重還是失重?迅速下放時(shí)彈簧秤示數(shù)變小是超重還是失重?生:迅速上提超重,迅速下放失重。體會為何用彈簧秤測物體重力時(shí)要保證在豎直方向且保持靜止或勻速實(shí)驗(yàn)2、學(xué)生站在醫(yī)用體重計(jì)上,觀察下蹲和站起時(shí)秤的示數(shù)如何變化?在實(shí)驗(yàn)前先讓同學(xué)們理論思考示數(shù)會如何變化再去驗(yàn)證,最后再思考。(1)在上升過程中可分為兩個(gè)階段:加速上升、減速上升;下蹲過程中也可分為兩個(gè)階段:加速下降、減速下降。(2)當(dāng)學(xué)生加速上升和減速下降時(shí)會出現(xiàn)超重現(xiàn)象;當(dāng)學(xué)生加速下降和減速上升時(shí)會出現(xiàn)失重現(xiàn)象;(3)出現(xiàn)超重現(xiàn)象時(shí)加速度方向向上,出現(xiàn)失重現(xiàn)象時(shí)加速度方向向下。完全失重
(四)實(shí)例探究☆力和運(yùn)動的關(guān)系1、一個(gè)物體放在光滑水平面上,初速為零,先對物體施加一向東的恒力F,歷時(shí)1秒,隨即把此力改變?yōu)橄蛭?,大小不變,歷時(shí)1秒鐘,接著又把此力改為向東,大小不變,歷時(shí)1秒鐘,如此反復(fù)只改變力的方向,共歷時(shí)1分鐘,在此1分鐘內(nèi)A.物體時(shí)而向東運(yùn)動,時(shí)而向西運(yùn)動,在1分鐘末靜止于初始位置之東B.物體時(shí)而向東運(yùn)動,時(shí)而向西運(yùn)動,在1分鐘末靜止于初始位置C.物體時(shí)而向東運(yùn)動,時(shí)而向西運(yùn)動,在1分鐘末繼續(xù)向東運(yùn)動D.物體一直向東運(yùn)動,從不向西運(yùn)動,在1分鐘末靜止于初始位置之東☆牛頓運(yùn)動定律的應(yīng)用2、用30N的水平外力F,拉一靜止放在光滑的水平面上質(zhì)量為20kg的物體,力F作用3秒后消失,則第5秒末物體的速度和加速度分別是A.v=7.5m/s,a=l.5m/s2B.v=4.5m/s,a=l.5m/s2C.v=4.5m/s,a=0D.v=7.5m/s,a=0
教師活動:(1)組織學(xué)生回答相關(guān)結(jié)論,小組之間互相補(bǔ)充評價(jià)完善。教師進(jìn)一步概括總結(jié)。(2)對學(xué)生的結(jié)論予以肯定并表揚(yáng)優(yōu)秀的小組,對不理想的小組予以鼓勵(lì)。(3)多媒體投放板書二:超重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實(shí)質(zhì):加速度方向向上。失重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實(shí)質(zhì):加速度方向向下。(4)運(yùn)用多媒體展示電梯中的現(xiàn)象,引導(dǎo)學(xué)生在感性認(rèn)識的基礎(chǔ)上進(jìn)一步領(lǐng)會基本概念。4.實(shí)例應(yīng)用,結(jié)論拓展:教師活動:展示太空艙中宇航員的真實(shí)生活,引導(dǎo)學(xué)生應(yīng)用本節(jié)所學(xué)知識予以解答。學(xué)生活動:小組討論后形成共識。教師活動:(1)引導(dǎo)學(xué)生分小組回答相關(guān)問題,小組間互相完善補(bǔ)充,教師加以規(guī)范。(2)指定學(xué)生完成導(dǎo)學(xué)案中“思考與討論二”的兩個(gè)問題。
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
一.說教材我今天說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)北師大版七年級下冊第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學(xué)習(xí)中學(xué)生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語言加以描述,初步具有了有條理的思考和表達(dá)的能力,為本節(jié)的深入學(xué)習(xí)奠定了基礎(chǔ)。二.說教學(xué)目標(biāo)本節(jié)課根據(jù)新的教學(xué)理念和學(xué)生需要掌握的知識,確立本節(jié)課的三種教學(xué)目標(biāo):知識與能力目標(biāo):根據(jù)具體情況,能用適當(dāng)?shù)暮瘮?shù)表示方法刻畫簡單實(shí)際問題中變量之間的關(guān)系,能確定簡單實(shí)際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標(biāo):經(jīng)歷探索某些圖形中變量之間的關(guān)系的過程,進(jìn)一步體會一個(gè)變量對另一個(gè)變量的影響,發(fā)展符號感。情感態(tài)度與價(jià)值觀目標(biāo):通過研究,學(xué)習(xí)培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關(guān)系的表達(dá),培養(yǎng)數(shù)學(xué)建模能力,增強(qiáng)應(yīng)用意識。
故直線l2對應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫出直線l1,l2的圖象如圖,可知點(diǎn)A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識,又不局限于基本知識.三、板書設(shè)計(jì)利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識圖能力以及語言表達(dá)能力.
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長方形拼成,則每個(gè)小長方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計(jì)劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計(jì)一個(gè)長方形花圃,使它的面積比學(xué)校計(jì)劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過程,體驗(yàn)用類比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識的興趣,體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡單的問題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.
∴此方程無解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時(shí)作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時(shí)作業(yè):
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
一、別克售后的經(jīng)營狀況 20**年別克售后的年終任務(wù)是xx萬,截止20**年6月底我們實(shí)際完成產(chǎn)值為xx元,,完成全年計(jì)劃的xx%,與年初的預(yù)計(jì)是基本吻合的。 其中總進(jìn)廠臺數(shù)為xx臺,車間總工時(shí)費(fèi)為xx元(機(jī)修:xx元,鈑金:xx元,油漆:xx元),我們的配件銷售額為xx元,其中材料成本(不含稅)為xx元,材料毛利為xx元,已完成了全年配件任務(wù)的xx%。
我園地處農(nóng)村,教育資源十分豐富。充分利用本地資源,開展低成本高質(zhì)量的教育一直是我們追求的方向。每年秋季,田間、山頭高掛枝頭的桔子成了孩子生活中最常見、最熟悉的水果。他們在桔園里嘻戲,觀察著桔子由綠變黃,和父母老師一起去摘桔子,桔子的清香讓他們難忘。孩子們在摸、聞、嘗桔子的過程中,充分運(yùn)用多種感官感知著桔子,他們發(fā)現(xiàn)著桔子的特征;當(dāng)他們把桔子皮剝開來時(shí),他們的手指需要一定的協(xié)調(diào)性和力量,手部小肌肉群得到發(fā)展和鍛煉;因此選擇桔子這一孩子們身邊熟悉的事物作為教學(xué)活動的內(nèi)容,符合《綱要》提出了的“生活化”“興趣性”原則。然而,面對中班孩子,隨著年齡的增加,生活經(jīng)驗(yàn)的拓展,他們的探究欲望漸漸強(qiáng)烈,在日常生活中他們對桔子的外形特征已有了基本的認(rèn)識,已經(jīng)積累了桔子的基本經(jīng)驗(yàn),因此選擇《桔子》這一教學(xué)內(nèi)容,如果只是一味的重復(fù)關(guān)于桔子的基本特征,勢必造成集體教學(xué)活動的無效,因此,我們從孩子的已有經(jīng)驗(yàn)出發(fā),從桔瓣排列的環(huán)形這一點(diǎn)切入,讓孩子們通過觀察感知,初步嘗試“環(huán)形數(shù)數(shù)”。這一集體教學(xué)活動旨在通過多通道的感知,游戲化的學(xué)習(xí),激發(fā)幼兒對生活中常見事物的興趣。
教材來源:此次活動來自生活。在秋天這個(gè)季節(jié)里,蔬菜隨處可見,我們?nèi)〔囊卜浅5姆奖恪J卟说钠贩N非常的多,營養(yǎng)價(jià)值也非常的豐富,吃法繁多,可以清炒、可以煮湯、可以涼拌、還可以腌著吃,總之,我們的生活里離不開蔬菜。然而,幼兒雖然知道很多的蔬菜,但對蔬菜的種類、用途、營養(yǎng)價(jià)值等還不是相當(dāng)?shù)牧私?在我們的日常生活中幼兒不愛吃青菜的現(xiàn)象也是很嚴(yán)重的,加深幼兒對蔬菜的認(rèn)識,激發(fā)幼兒對蔬菜的興趣,引導(dǎo)幼兒多吃蔬菜是很有必要的。就如《綱要》中所說的,“既符合幼兒園的現(xiàn)實(shí)需要,又有利于其長遠(yuǎn)的發(fā)展;既貼近幼兒的生活,選擇幼兒趕興趣的事物和問題,又有助于拓展幼兒的經(jīng)驗(yàn)和視野。”因此,此次的活動來源于生活,又能夠服務(wù)幼兒的生活。
孩子們,轉(zhuǎn)轉(zhuǎn)小腦筋猜個(gè)小謎語,孩子們的注意力就集中了起來。我就說出了“車“的謎面:四腳圓滾滾,眼睛亮晶晶,嘀嘀一聲叫,招手過路人。我的語氣重點(diǎn)在嘀嘀一聲叫,孩子馬上猜出是汽車。然后就問誰是坐車來的?你坐的車是什么顏色?你做的車大?還是???引導(dǎo)幼兒懂得車給人們帶來了方便,就是車的用途了,幼兒園的車都是黃色的,哪輛車是你坐的?孩子立刻回答自己坐的是1號車或者2號車,這就引出了車是有“標(biāo)志”的。然后在引導(dǎo)幼兒認(rèn)識幾種常見的特殊車輛,出示110,120,119的車輛,讓幼兒分別找出車的標(biāo)志是什么?它的用途,再讓幼兒模仿這幾種車跑起來的聲音,這時(shí)的孩子興趣很高,都樂意學(xué),嘴里發(fā)出(危樓危樓)或者(日日)的聲音。
教材來源:此活動選材來源于生活。我們都知道,蘿卜是幼兒比較熟悉的蔬菜之一,在秋天這個(gè)豐收的季節(jié),蘿卜在農(nóng)村菜場等地隨處可見,且取材方便。它的品種非常豐富,有白蘿卜、胡蘿卜、卞蘿卜等,其中大小不同、顏色不同、形狀不同;它營養(yǎng)豐富,吃法繁多,可煮湯、可涼拌、可紅燒、可腌著吃,有的還可生吃呢!民間還有“十月蘿卜小人參”的美稱。然而幼兒雖然知道蘿卜,但對蘿卜的種類、用途、營養(yǎng)價(jià)值等還不太了解,在日常生活中經(jīng)常發(fā)現(xiàn)幼兒不愛吃蘿卜的現(xiàn)象。因此,有必要使幼兒形成對蘿卜正確的認(rèn)識,加深對蘿卜的特征、用途等的理解,激發(fā)幼兒愛蘿卜的情感。我們認(rèn)為,選擇此教材有一定的季節(jié)性、必要性,就如《綱要》中所說,“既符合幼兒的現(xiàn)實(shí)需要,又有利于其長遠(yuǎn)發(fā)展;既貼近幼兒的生活,選擇感興趣的事物或問題,又有助于拓展幼兒的經(jīng)驗(yàn)和視野”。因此,此活動來源于生活,又能服務(wù)于幼兒的生活。