解1:設(shè)該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設(shè)該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
1.自學文本出示書中情境圖:有21架飛機要參加飛行表演,怎樣飛呢?想請同學們幫忙設(shè)計編組方案,下面小組同學合作,用學具擺一擺,設(shè)計出自己的編組方案,看哪個小組設(shè)計的方案最多?學生小組合作,邊擺學具邊說方案。2.交流研討哪組想到前面來匯報一下你們制定的飛行方案?(不必強調(diào)平均分,如有小組同學說出每組有7(3)架,可以分成3(7)組,或每7(3)架一組,可以分成3(7)組,老師在給予肯定的同時可以問其它小組擺法一樣嗎?之后板書算式:21÷7=3,21÷3=7。如果學生沒說出平均分,老師可引導說:有時表演的每組也可同樣多)
活動過程:一、調(diào)動已有經(jīng)驗,回憶相關(guān)知識。1、前段時間我們小朋友和老師一起做了有關(guān)時鐘的調(diào)查,知道時鐘有好多好多種?,F(xiàn)在請你看看老師從網(wǎng)上下載的鐘,看看你認識它嗎?2、依次出示幻燈片,幼兒講名稱。3、剛才我們所見到的只是時鐘家族的一部分,它可能還有其他的種類,我們以后再來探討。4、上次我們已經(jīng)認識過鐘面,來告訴大家,最長的針叫(秒針),有點長的針叫(分針),最短的針叫時針。鐘面上一共有多少個數(shù)字(12),最上面的是數(shù)字12,然后依次是1、2……11。請你好好回憶一下,時鐘里的指針是朝哪一個方向走的?(1……12)對了,這樣的方向就叫順時針方向。
(1)思考:作者是按什么順序?qū)懙??寫了哪些?nèi)容?明確:作者是按事情發(fā)展的先后順序來寫的。首先描述了一望無際的草原美景,使人感受到了一種境界美;接著又展示了主人歡迎遠方客人的隆重場面;最后把酒話別,用“蒙漢情深何忍別,天涯碧草話斜陽”來收束全文。(板書:初到草原——遠迎客人——熱情相見——盛情款待——聯(lián)歡話別)作者筆下的草原給你留下了什么印象?(學生討論、交流自己的印象,可與讀此文之前對草原的印象進行對比并探討。)
1.會寫8個生字。能正確讀寫詞語表中的詞語。2.朗讀課文,能借助文中語言文字的描述展開想象,感受草原之美。(重點)3.能體會在寫景中融入感受的好處。4.背誦第1自然段。一、談話引入,創(chuàng)設(shè)情境(播放關(guān)于草原的歌曲)同學們,聽了這首歌你們是不是有一種置身于草原的感覺呢?誰能談一談你心中的草原?(課件出示相關(guān)圖片,自由交流)當老舍先生第一次來到內(nèi)蒙古大草原時,他看到的是一番怎樣的情景呢?現(xiàn)在我們就隨著老舍先生一起到美麗的草原去看一看。(板書課題:草原)
教學目標: 1.知識技能: (1)了解鍵盤分區(qū)?! ?2)掌握主鍵盤區(qū)字母鍵、數(shù)字鍵、符號鍵的名稱和分布規(guī)律?! ?3)能在“記事本”中輸入字符,學會使用幾個常用的控制鍵?! ?.過程與方法:學生自主學習與小組合作學習相結(jié)合,掌握本課時的教學目標 3.情感態(tài)度價值觀:培養(yǎng)學生對信息技術(shù)課的學習興趣愛和保持樂觀的生活態(tài)度。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學習二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學習求一些簡單的實際問題中二次函數(shù)的解析式.在教學中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
問題情景,導入新課1、多媒體課件出示例1主題圖,問:圖上的小朋友在干什么?你們測量過體重嗎?測量了幾次?讀一年級剛?cè)雽W時,你測量的體重是多少?(學生自由匯報各自的體重情況)怎樣才能讓大家一看就明白我們班所有人的體重情況呢?二、活動體驗,探究新知1、電腦出示統(tǒng)計表(1): 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 師:現(xiàn)在我們就用“正”字記錄法來統(tǒng)計一下剛?cè)雽W時的體重(集體活動)2、活動結(jié)束后,師生共同將收集的數(shù)據(jù)整理后填入表格中。3、二年級時,我們的體重有什么變化呢? 電腦出示統(tǒng)計表(2) 體重(千克)15以下16~20 21~25 26~30 31以上人數(shù) 集體進行統(tǒng)計活動,并將結(jié)果填入表中。4、討論:如果想把兩年的體重數(shù)據(jù)填入一個統(tǒng)計表中,該如何表示呢? 學生討論后,在黑板上出示表格(3):(單位:千克)
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
一、游戲活動激趣,認識對稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機、梳子”的一部分,分男、女生猜。2、認識對稱物體:1)師質(zhì)疑:為什么女生猜得又快又準呢?2)小結(jié):像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱物體。(板書:對稱)二、猜想驗證新知,認識軸對稱圖形(一)初步感知對稱圖形1、將“剪刀、飛機、扇子”等對稱物體抽象出平面圖形,讓學生觀察,這些平面圖形還是不是對稱的。2、師小結(jié):像這樣的圖形,叫做對稱圖形。(板書:圖形)(二)猜想驗證對稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學生觀察。師:這些平面圖形是不是對稱圖形?怎樣證明它們是不是對稱圖形?
1、拿出一本數(shù)學教課書,和一只筆,提問:哪個重有些?2、肯定學生的回答,并讓學生“掂一掂”,然后讓學生說說有什么樣的感覺。3、從剛才的實踐得出結(jié)論:物體有輕有重。板書課題。二、觀察、操作領(lǐng)悟新知1、出示主題掛圖,物體的輕重的計量。觀察主題掛圖。(1、)請同學們觀察一下,這幅圖畫的是什么?(2、)這幅圖中的小朋友和阿姨在說什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R娢锲返馁|(zhì)量,我們現(xiàn)在來交流以下好嗎?表示物品有多重,可以用克和千克單位來表示。(4、)在學生說的同時,老師拿出有準備的東西展示。
通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
【類型一】 逆用積的乘方進行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運用此公式可進行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大小:213×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關(guān)鍵.三、板書設(shè)計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學過程中教師可以采用與前面相同的方式展開教學.教師在講解積的乘方公式的應(yīng)用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學生的運算速度和應(yīng)用能力,也可以補充講解:當n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當n為偶數(shù)時,(-a)n=an(n為正整數(shù))
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設(shè)計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系
方法總結(jié):判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結(jié):動手操作或結(jié)合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向?qū)W生質(zhì)疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設(shè)寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學生需要手把手的教,因此,應(yīng)該引導學生總結(jié)多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;
1.知識目標:在回顧與思考中建立本章的知識框架圖,復習有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標:進一步體會證明的必要性,發(fā)展學生的初步的演繹推理能力;進一步掌握綜合法的證明方法,結(jié)合實例體會反證法的含義;提高學生用規(guī)范的數(shù)學語言表達論證過程的能力.3.情感價值觀要求通過積極參與數(shù)學學習活動,對數(shù)學的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學生合作交流的能力,以及獨立思考的良好學習習慣.重點:通過例題的講解和課堂練習對所學知識進行復習鞏固難點:本章知識的綜合性應(yīng)用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關(guān)于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設(shè)計1.中心對稱如果把一個圖形繞著某一點旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調(diào)學生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設(shè)計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
1、 談話引入新課六一快到了。小朋友們在老師的帶領(lǐng)下忙著布置自己的教室呢!可是他們遇到了一些數(shù)學上的問題,你能幫他們一快解決嗎?2、教學例1。(1)、投影出示主題圖引導學生仔細觀察。說說他們遇到了什么問題?(2)、引導學生解決問題并列出算式。板書:56÷8(3)、引導學生得出算式的商。問:你是怎么計算的?(想乘算除)(4)、學生獨立解決:要是掛7行呢?你能夠解決嗎?學生說出自己的計算結(jié)果,并把求商的過程跟大家說一說。2、 小結(jié):在今天的學習中我們不僅幫小朋友們解決了數(shù)學問題,而且還進一步學會了利用乘法口訣來求商。在以后的除法中只要大家能夠熟記口訣,就能很快算出除法的商了。