2教學目標⒈知識與技能目標了解皮影的相關知識,體會皮影藝術的特點。⒉過程與方法目標學習怎樣去制作剪影,最后怎樣讓剪影動起來,體驗皮影藝人的表演技能。⒊情感與價值觀目標通過對剪影知識的了解和制作剪影,增強學生對中國民間藝術的熱愛,培養(yǎng)學生的創(chuàng)造精神。
2學情分析一年級學生對美術的興趣很高,對五顏六色的物體特別感興趣,孩子們課前做的準備很好。3重點難點1.節(jié)日里煙花的畫法。2.油畫棒和水彩顏料相結合的涂色技巧。教學活動活動1【活動】教案第5課五彩的煙花
課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質和推論,會應用定理和推論解釋生活中的一些現(xiàn)象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當?shù)姆柋硎军c、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差
課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結構特征,并能運用這些特征描述生活中簡單物體的結構。 2、讓學生了解柱、錐、球的側面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經(jīng)常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
導語在必修第一冊中,我們研究了函數(shù)的單調性,并利用函數(shù)單調性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內的平均速度v ?近似的描述它的運動狀態(tài)。
新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②
3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.
一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內的兩種現(xiàn)象或性質之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質,這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.
2重點難點教學重點:1.了解中國航天知識和掌握飛船的主要結構。2.利用各種廢棄物制作各種宇宙飛船。教學難點:學習利用各種廢棄物制作宇宙飛船,培養(yǎng)學生養(yǎng)成收集有關宇宙飛船的信息與資料的習慣教學活動活動1【導入】導入新課.師:今年11月1日5時58分10秒神舟八號的發(fā)射成功,再一次圓了中國人民的千年飛天夢。真讓人振奮啊!好,現(xiàn)在讓我們一起回到那激動人心的時刻吧。教師播放在段有關“神州八號”載人飛船上天的影片,在播放過程中講解有關“神州八號”的發(fā)射情況。
3課題類型造型表現(xiàn)4教學目標1、認識三原色,讓學生初步了解三原色的知識。2、觀察兩個原色調和之后產(chǎn)生的色彩變化,說出由兩原色調出的第三個顏色(間色)3、能夠調出預想的色彩,并用它們涂抹成一幅繪畫作品。5重點難點1、引導學生觀察三原色在相互流動中的色彩變化。2、引導學生進行色彩的調和、搭配。3、培養(yǎng)學生愛色彩、善于動手、善于觀察、善于動腦的能力。
課題序號6-3授課形式講授與練習課題名稱等比數(shù)列課時2教學 目標知識 目標理解并掌握等比數(shù)列的概念,掌握并能應用等比數(shù)列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質 目標通過對等比數(shù)列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結的科學思維習慣和嚴謹?shù)膶W習態(tài)度。教學 重點等比數(shù)列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數(shù)列的通項公式與求和公式變式運用。教學內容 調整無學生知識與 能力準備數(shù)列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核
課程名稱數(shù)學課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標群體14級五高班教學環(huán)境教室學習目標知識目標: (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標: 正確分析問題的能力 制造業(yè)通用能力目標: 正確分析問題的能力學習重點直線的斜率公式的應用.學習難點直線的斜率概念和公式的理解.教法、學法講授、分析、討論、引導、提問教學媒體黑板、粉筆
課程分析中專數(shù)學課程教學是專業(yè)建設與專業(yè)課程體系改革的一部分,應與專業(yè)課教學融為一體,立足于為專業(yè)課服務,解決實際生活中常見問題,結合中專學生的實際,強調數(shù)學的應用性,以滿足學生在今后的工作崗位上的實際應用為主,這也體現(xiàn)了新課標中突出應用性的理念。分段函數(shù)的實際應用在本課程中的地位:(1) 函數(shù)是中專數(shù)學學習的重點和難點,函數(shù)的思想貫穿于整個中專數(shù)學之中,分段函數(shù)在科技和生活的各個領域有著十分廣泛的應用。(2) 本節(jié)所探討學習分段函數(shù)在生活生產(chǎn)中的實際問題上應用,培養(yǎng)學生分析與解決問題的能力,養(yǎng)成正確的數(shù)學化理性思維的同時,形成一種意識,即數(shù)學“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學計劃,函數(shù)的實際應用舉例內容安排在第三章函數(shù)的最后一部分講解。本節(jié)內容是在學生熟知函數(shù)的概念,表示方法和對函數(shù)性質有一定了解的基礎上研究分段函數(shù),同時深化學生對函數(shù)概念的理解和認識,也為接下來學習指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學生實際情況,由生活生產(chǎn)中的實際問題入手,求得分段函數(shù)此部分知識以學生生活常識為背景,可以引導學生分析得出。
系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數(shù)在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上?!貞c. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20