2.過(guò)程與方法 通過(guò)實(shí)踐操作、猜想驗(yàn)證、合作探究,經(jīng)歷發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”這一性質(zhì)的活動(dòng)過(guò)程,發(fā)展空間觀念,培養(yǎng)邏輯思維能力,體驗(yàn)“做數(shù)學(xué)”的成功。3.情感態(tài)度與價(jià)值觀 (1)發(fā)現(xiàn)生活中的數(shù)學(xué)美,會(huì)從美觀和實(shí)用的角度解決生活中的數(shù)學(xué)問(wèn)題。 (2)學(xué)會(huì)從全面、周到的角度考慮問(wèn)題。 【教學(xué)重點(diǎn)】 理解、掌握“三角形任意兩邊之和大于第三邊”的性質(zhì);理解兩點(diǎn)間的距離的含義?!窘虒W(xué)難點(diǎn)】 引導(dǎo)探索三角形的邊的關(guān)系,并發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”的性質(zhì)?!窘虒W(xué)方法】啟發(fā)式教學(xué)、自主探索、合作交流、討論法、講解法?!菊n前準(zhǔn)備】多媒體、學(xué)具袋【課時(shí)安排】 1課時(shí)【教學(xué)過(guò)程】(一)復(fù)習(xí)導(dǎo)入 師:什么樣的圖形叫三角形?生交流:由3條線段圍成的圖形(每相鄰兩條線段的端點(diǎn)相連)叫做三角形。
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_________ ,周長(zhǎng)為________. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
“數(shù)的運(yùn)算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容,減法是其中的一種基本運(yùn)算.本課的學(xué)習(xí)遠(yuǎn)接小學(xué)階段關(guān)于整數(shù)、分?jǐn)?shù)(包括小數(shù))的減法運(yùn)算,近承第四節(jié)有理數(shù)的加法運(yùn)算.通過(guò)對(duì)有理數(shù)的減法運(yùn)算的學(xué)習(xí),學(xué)生將對(duì)減法運(yùn)算有進(jìn)一步的認(rèn)識(shí)和理解,為后繼諸如實(shí)數(shù)、復(fù)數(shù)的減法運(yùn)算的學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ).鑒于以上對(duì)教學(xué)內(nèi)容在教材體系中的位置及地位的認(rèn)識(shí)和理解,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)目標(biāo):經(jīng)歷探索有理數(shù)的減法法則的過(guò)程,理解有理數(shù)的減法法則,并能熟練運(yùn)用法則進(jìn)行有理數(shù)的減法運(yùn)算.2、能力目標(biāo):經(jīng)歷由特例歸納出一般規(guī)律的過(guò)程,培養(yǎng)學(xué)生的抽象概括能力及表達(dá)能力;通過(guò)減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會(huì)轉(zhuǎn)化、化歸的數(shù)學(xué)思想.3、情感目標(biāo):
說(shuō)明:此處進(jìn)行的是一次嘗試應(yīng)用乘方運(yùn)算來(lái)解決開頭的問(wèn)題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對(duì)折56次后有多厚?試驗(yàn)一下你能折這么厚嗎?說(shuō)明:這個(gè)探索實(shí)際上仍是對(duì)學(xué)生應(yīng)用能力的一個(gè)檢查,紙對(duì)折56次,用什么運(yùn)算來(lái)計(jì)算比較方便,另外計(jì)算過(guò)程中可使用計(jì)算器,進(jìn)一步加深對(duì)乘方意義的理解(五)作業(yè)P56頁(yè)1、2說(shuō)明:這兩個(gè)習(xí)題是對(duì)課本上例題的簡(jiǎn)單重復(fù)和模仿,通過(guò)本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成??傊?,在整個(gè)教學(xué)設(shè)計(jì)中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來(lái),不斷從舊知識(shí)中獲得新的認(rèn)識(shí),通過(guò)不斷進(jìn)行聯(lián)系比較,讓學(xué)生主動(dòng)自覺(jué)地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進(jìn)而優(yōu)化了整個(gè)教學(xué)。
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個(gè)計(jì)算題,目的是想查看學(xué)生學(xué)的效果如何,是否對(duì)哪類題型還留有疑問(wèn)。 6. 自我評(píng)價(jià): 這堂課我覺(jué)得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識(shí)穿插在學(xué)與練當(dāng)中,充分地利用了課堂有限的時(shí)間,并且能讓學(xué)生邊學(xué)邊練,及時(shí)鞏固。 當(dāng)然這堂課也有很多不足之處,我覺(jué)得自己對(duì)于課堂上學(xué)生做練習(xí)時(shí)出現(xiàn)的一些小問(wèn)題處理還沒(méi)有能夠處理得很好,我應(yīng)該吸取經(jīng)驗(yàn)教訓(xùn),再以后的教學(xué)中加以改進(jìn)。 另外對(duì)于多個(gè)有理數(shù)相乘時(shí)的符號(hào)問(wèn)題,我覺(jué)得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補(bǔ)充,讓學(xué)生加深理解。從中我也得到一個(gè)教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識(shí)點(diǎn),才能更好地幫學(xué)生形成一個(gè)系統(tǒng)的知識(shí)系統(tǒng)!
五、兩點(diǎn)說(shuō)明。(一)、板書設(shè)計(jì)這節(jié)課的板書我是這樣設(shè)計(jì)的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語(yǔ)言轉(zhuǎn)化成符號(hào)語(yǔ)言的能力,板書中只出現(xiàn)兩種法則的符號(hào)表示,從而加深他們對(duì)法則的理解,板書右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問(wèn)題。板書下方是課堂小結(jié),重點(diǎn)寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。有理數(shù)的除法板演練習(xí):有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時(shí)間分配:教學(xué)過(guò)程中的八個(gè)環(huán)節(jié)所需的時(shí)間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。
一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(jí)(上)義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材第2章第6節(jié)第一課時(shí)的內(nèi)容。它是學(xué)生在已經(jīng)掌握有理數(shù)加法、減法、乘法、除法、乘方以后進(jìn)行學(xué)習(xí)的。它是建立在有理數(shù)的有關(guān)概念和各種運(yùn)算的意義及法則的基礎(chǔ)上進(jìn)行的綜合性運(yùn)算。它是本章的重點(diǎn)之一,是以上各種運(yùn)算的繼續(xù)和發(fā)展,對(duì)學(xué)生運(yùn)算能力和數(shù)學(xué)學(xué)習(xí)能力的培養(yǎng),有著十分重要的意義,同時(shí)也是初中數(shù)學(xué)運(yùn)算的重要內(nèi)容之一,是后續(xù)學(xué)習(xí)的基礎(chǔ)。(二)教學(xué)目標(biāo)的確立:參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)技能目標(biāo):(1)掌握有理數(shù)的混合運(yùn)算法則及運(yùn)算順序。(2)熟練的進(jìn)行有理數(shù)的混合運(yùn)算。2、能力目標(biāo):培養(yǎng)學(xué)生的觀察能力和運(yùn)算能力。3、情感與態(tài)度目標(biāo):(1)培養(yǎng)學(xué)生在計(jì)算前認(rèn)真審題,確定運(yùn)算順序,計(jì)算中按步驟審慎進(jìn)行,并養(yǎng)成驗(yàn)算的良好的學(xué)習(xí)習(xí)慣。
在答案的匯總過(guò)程中,要肯定學(xué)生的探索,愛護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對(duì)學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評(píng)價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號(hào)情況(可遇見情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對(duì)值相加;加數(shù)的絕對(duì)值相減)⑤ 從和的符號(hào)確定方面(同號(hào)兩數(shù)相加符號(hào)的確定;異號(hào)兩數(shù)相加符號(hào)的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.
5、總結(jié)學(xué)生解題過(guò)程中存在的問(wèn)題,并指導(dǎo)并糾正、分析根本原因。6、通過(guò)演示法給學(xué)生演示完整、詳細(xì)和規(guī)范的解題過(guò)程。7、總結(jié)有理數(shù)的運(yùn)算順序和方法。先讓學(xué)生自己總結(jié)運(yùn)算順序,培養(yǎng)學(xué)生自己思考的能力,然后教師進(jìn)行糾正。等這個(gè)過(guò)程結(jié)束之后,再給出完整的運(yùn)算順序和方法。8、出示練習(xí)題,鞏固所學(xué)知識(shí),教師及時(shí)指正。9、最后布置課后作業(yè)題。四、教學(xué)評(píng)價(jià)本節(jié)課我注重體現(xiàn)“以教師為主導(dǎo)、學(xué)生為主體、以學(xué)生發(fā)展為本的教學(xué)思想”。1、通過(guò)具體的題目引入,讓學(xué)生先以自己的知識(shí)體系解決問(wèn)題,在這過(guò)程中發(fā)現(xiàn)問(wèn)題、歸納總結(jié)原因,并予以解決。一方面復(fù)習(xí)前面所學(xué)的基本運(yùn)算,另一方面完善學(xué)生的知識(shí)體系。2、培養(yǎng)學(xué)生自主學(xué)習(xí)與探究的能力、分析與解決問(wèn)題的能力。
四、教學(xué)過(guò)程分析為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排了以下教學(xué)環(huán)節(jié):(一)復(fù)習(xí)導(dǎo)入主要復(fù)習(xí)一下三種統(tǒng)計(jì)圖,為接下來(lái)介紹三種統(tǒng)計(jì)圖的特點(diǎn)及根據(jù)實(shí)際問(wèn)題選取適當(dāng)?shù)慕y(tǒng)計(jì)圖做好知識(shí)準(zhǔn)備。(二)問(wèn)題探究選取課本上“小華對(duì)1992~2002年同學(xué)家中有無(wú)電視機(jī)及近一年來(lái)同學(xué)在家看電視的情況”的3個(gè)調(diào)查項(xiàng)目,進(jìn)而設(shè)計(jì)3個(gè)探究問(wèn)題從而加深學(xué)生對(duì)每一種統(tǒng)計(jì)圖的進(jìn)一步認(rèn)識(shí),至此用自己的語(yǔ)言總結(jié)出每一種統(tǒng)計(jì)圖的特點(diǎn)。(三)實(shí)踐練兵這一環(huán)節(jié)通過(guò)2個(gè)實(shí)際問(wèn)題的設(shè)計(jì),通過(guò)學(xué)生對(duì)問(wèn)題的分析、討論,使學(xué)生認(rèn)識(shí)到適當(dāng)選取統(tǒng)計(jì)圖有助于幫助人們?nèi)ジ焖佟⒏鼫?zhǔn)確地獲取信息。(四)課堂小結(jié)總結(jié)這一節(jié)課所學(xué)的重點(diǎn)知識(shí),這部分主要是讓學(xué)生自己去總結(jié),看看這節(jié)課自己有哪些收獲。(五)作業(yè)布置進(jìn)一步鞏固本節(jié)課所學(xué)的知識(shí),達(dá)到教學(xué)效果。以上就是我對(duì)這節(jié)課的見解,不足之處還望批評(píng)和指正。
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對(duì)應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問(wèn)題轉(zhuǎn)化為求函數(shù)問(wèn)題,培養(yǎng)自己利用數(shù)學(xué)知識(shí)解答實(shí)際問(wèn)題的能力.三、板書設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
1.使學(xué)生掌握用描點(diǎn)法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過(guò)配方確定拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過(guò)程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫出二次函數(shù)y=ax2+bx+c的圖象和通過(guò)配方確定拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問(wèn)題1.你能說(shuō)出函數(shù)y=-4(x-2)2+1圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長(zhǎng)AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長(zhǎng)有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來(lái)解.三、板書設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺(tái),還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),使課堂真正成為學(xué)生展示自我的舞臺(tái).充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問(wèn)題、解決問(wèn)題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的兩個(gè)根 的和與積和原來(lái)的方程有什么聯(lián)系?小組交流。3、一般地,對(duì)于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R(shí)應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;