一是先用計算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學生探索數(shù)學規(guī)律的興趣,為下面的數(shù)學探險作鋪墊。二是數(shù)學探險。在這個步驟中,我先出示8個1乘8個1,學生用計算器計算的答案肯定不一樣,因為學生帶來的計算器所能顯示的數(shù)位不一樣,而且這些計算器所能顯示的數(shù)位都不夠用,也就是這道題目計算器不能解決。這時我提問:“你覺得問題出在哪兒?是我們錯了,還是計算器錯了?你能想辦法解決嗎?請四人小組討論一下解決方案。”這樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問題的需要和欲望。在學生找不到更好的解決方法時,引導學生向書本請教,完成課本第101頁想想做做的第四題。讓學生利用計算器算出前5題的得數(shù),引導學生通過觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個算式,發(fā)展學生的合情推理能力,同時也讓學生領略了數(shù)學的神奇。
②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構.突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數(shù)式存在的普遍性;讓學生給自己構造的一些簡單代數(shù)式賦予實際意義,進一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應”,直至豁然開朗,突破思維的瓶頸.2.生成預設為生成服務,本案編代數(shù)式、主題研究等環(huán)節(jié)的設計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學生思維的亮點,及時進行引導和激勵,并根據(jù)具體教學對象,適當調(diào)整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預設與生成齊飛.
(六)當堂達標(練習二、三 10分鐘)練習二讓學生口答,通過練習,鞏固學生對直線、射線、線段表示方法的掌握。練習三讓學生去黑板板演,教師檢驗對錯并重點強調(diào)幾何語言的表述。文字語言和圖形語言之間的轉(zhuǎn)化是難點,著重練習文字語言向圖形語言的轉(zhuǎn)化,提高幾何語言的理解與運用能力。當堂達標是檢查學習效果、鞏固知識、提高能力的重要手段。通過練習,學生會體驗到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時獲得信息反饋,以便課下查漏補缺。 (七)小結(3分鐘)教師提問“這節(jié)課我們學了哪些知識?”請學生回答,教師做適當補充。課堂小結對一節(jié)課起著“畫龍點晴”的作用,它能體現(xiàn)一節(jié)課所講的知識和數(shù)學思想。因此,在小結時,教師引導學生概括本節(jié)內(nèi)容的重點。
朋友們都聽說了我們的神奇魔力,米老鼠也來請我們幫忙了,你們愿意幫他把墻修補好嗎?(幻燈11,同時請一名同學到臺前來親自動手粘一下)在我們的幫助下,米老鼠家缺了10塊磚的墻就被修補好了(幻燈12)七、拼圖大比賽。1、師:現(xiàn)在請同學們運用自己手中的所有材料,發(fā)揮你的想象,可以自己拼,也可以和組員合作拼出自己喜歡的圖形,比一比,看那些同學拼得又好又快,又有創(chuàng)意。 2、展示學生作品。學生自己評價或者互相評價。八、欣賞品評,知識延伸 師:同學們剛才拼的圖形非常漂亮,老師很喜歡。生活中有許多地方都需要優(yōu)美的圖形的裝飾,同學們也可以是一位小小設計師,設計出美麗的圖案,裝點生活,美化環(huán)境。(欣賞生活中的優(yōu)秀裝飾作品) 師:通過剛才的欣賞,你有什么想法?
師:剛才同學們用兩個完全相同的三角形拼出四邊形,用兩個不完全相同的三角形拼出一個任意的四邊形。用三個相同的三角形拼出了梯形,如果把各種類型的三角形放在一起來個快樂大比拼,你們行嗎?那好,請拿出準備好的三角形拼一拼,看誰拼出的圖案最漂亮。生:展示(每個小組選一個代表到前面展示本組的作品,并說說作品中包含哪些圖形)4.知識生活秀:(4分鐘)(1)同學們都到喜歡有山有水的地方去玩,大自然是非常美麗的,所以我們要保護她,愛護花草樹木,做熱愛大自然的好孩子。現(xiàn)在用你們手中的圖形貼在黑板上,集體繪制一幅大自然的圖畫。繪制后:看著這幅圖加上自己豐富的想象說一句話。(2)我們今天用的知識在數(shù)學中有一個名字叫做“密鋪”,在我們的生活中,動物的世界中很多地方用到了密鋪,想在就讓我們一起去看看吧,圖片欣賞。看來生活中處處有數(shù)學啊,在感受數(shù)學魅力的同時,我想知道本節(jié)課的內(nèi)容你們都學會了嗎?
教學目標1、通過觀察、操作,使學生體會所學平面圖形的特征,并能用自己的語言描述長方形、正方形的邊的特征。2、通過觀察、操作,使學生初步感知所學圖形之間的關系。3、通過數(shù)學活動,培養(yǎng)學生用數(shù)學進行交流、合作探究和創(chuàng)新的意識。教具、學具準備 實物風車、圖形卡片、剪刀、膠水教學過程一、創(chuàng)設情境,生成問題(課前播放《大風車》主題曲)小朋友,喜歡剛才聽到的歌嗎?那是少兒頻道《大風車》節(jié)目的主題曲。今天,老師不但給大家?guī)砹艘皇状箫L車的歌,還帶來了一個漂亮的大風車。(老師拿風車并讓它轉(zhuǎn)起來)想玩嗎?不過大家得自己做,能行嗎?二、探索交流,解決問題1、觀察比較誰來說說做風車都需要哪些材料?不錯,除了小棒、大頭針,還需要一張紙做風車的風葉,需要什么形狀的紙呢?你們說得很對,做風車的風葉要用一張正方形的紙(課件出示),正方形跟我們見過面了,是個老朋友了。回憶一下,除了正方形,我們還學過哪些平面圖形?
小結:分別沿正方形紙的兩組對邊做出的圓筒一樣長、也一樣粗,因為正方形的四條邊都相等。解決問題。課件出示:你能用幾種方法,數(shù)出下圖中小正方體的個數(shù)?方法一:可以從上往下數(shù)(或從下往上數(shù))第一層有2個,第二層有4個,第三層有6個,三層共有:2 + 4 + 6 = 12(個);方法二:也可以從左往右數(shù)(或從右往左數(shù))。第一排有4個,第二排有6個,第三排有2個,三排共有:4 + 6 + 2 = 12(個);方法三:還可以將最上面一層的2個移到第二層的右側。這樣,這堆木塊就變成了兩層,每層都有6個,共有6 + 6 = 12(個)。(四)全課總結這節(jié)課我們用長方體和正方體拼組了很多不同形狀的圖形。其實在我們的生活中,有很多物體的形狀都是由長方體和正方體拼組而成的,希望同學們課下留心觀察。(五)練習數(shù)一數(shù),下面的圖形由幾個正方體組成?
四、范例學習、理解領會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學生畫圖、 實驗、觀察、探索。五、隨堂練習課本隨堂練習 學生觀察、畫圖、合作交流。六、課堂總結本節(jié)課通過各種實踐活動,促進大家對內(nèi)容的理解,本課內(nèi)容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學的嚴謹性和數(shù)學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學交流水平,發(fā)展探索、合作的精神.
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應該進多少件西裝?六、課堂小結:盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)
(1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學交流水平,發(fā)展探索、合作的精神.
證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數(shù)學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學活動的經(jīng)驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.
解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常 數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.
故直線l2對應的函數(shù)關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內(nèi)畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結:此題在待定系數(shù)法的應用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數(shù)的表達式.通過教學,進一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.