提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

北師大初中七年級(jí)數(shù)學(xué)下冊(cè)圖形的全等教案

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    1.使學(xué)生掌握用描點(diǎn)法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對(duì)稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對(duì)稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)有理數(shù)的加減混合運(yùn)算的實(shí)際應(yīng)用教案

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)有理數(shù)的加減混合運(yùn)算的實(shí)際應(yīng)用教案

    (1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.理解表中的正負(fù)號(hào)表示的含義,根據(jù)條件計(jì)算出每天的水位即可求解;(2)只要觀察星期日的水位是正負(fù)即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題.探究點(diǎn)二:有理數(shù)的加減混合運(yùn)算在生活中的其他應(yīng)用

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)下冊(cè)圖形與變換教案2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級(jí)下冊(cè)圖形與變換教案2篇

    第二種分法:分成三類:直角是一類,比直角小的分為一類,比直角的的又分為一類。2.討論交流,引導(dǎo)學(xué)生明確銳角和鈍角的意義。教師:比直角小的就是直角的弟弟,比直角的的就是它的哥哥。我們來為它們起個(gè)名字好嗎?讓學(xué)生充分交流后引導(dǎo)小結(jié):比直角小的叫銳角,比直角大的叫鈍角。相互討論:怎樣判斷一個(gè)角是不是銳角或鈍角?學(xué)生討論(得出和直角比、用眼睛看等方法)三、實(shí)踐應(yīng)用,鞏固提高1.完成練習(xí)九的第1、2題。2.畫一畫:請(qǐng)你分別畫出一個(gè)直角、銳角和鈍角。四、游戲活動(dòng)1.折一折,比一比。讓學(xué)生利用身邊的材料折出不同的角,并互相認(rèn)一認(rèn)是什么角?2.摸摸、猜猜。(分小組活動(dòng))活動(dòng)規(guī)則:把一同學(xué)眼睛蒙住,另一同學(xué)用活動(dòng)角掰成大小不同的角,讓蒙住眼睛的同學(xué)通過手摸后說出是什么角?其他同學(xué)當(dāng)裁判。然后組內(nèi)同學(xué)交換活動(dòng)。五、全課總結(jié)這節(jié)課我們學(xué)習(xí)了什么?你有哪些收獲?六、布置作業(yè)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的圖象1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的圖象1教案

    解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于   第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于   第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的圖象2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的圖象2教案

    觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱圖形嗎?如果是,請(qǐng)找出對(duì)稱中心.反比例函數(shù)圖象是軸對(duì)稱圖形嗎?如果是,請(qǐng)指出它的對(duì)稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比2教案

    ●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形判定定理的證明1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形判定定理的證明1教案

    當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)2教案

    1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_________ ,周長(zhǎng)為________. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定2教案

    三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的乘方說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的乘方說課稿

    說明:此處進(jìn)行的是一次嘗試應(yīng)用乘方運(yùn)算來解決開頭的問題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對(duì)折56次后有多厚?試驗(yàn)一下你能折這么厚嗎?說明:這個(gè)探索實(shí)際上仍是對(duì)學(xué)生應(yīng)用能力的一個(gè)檢查,紙對(duì)折56次,用什么運(yùn)算來計(jì)算比較方便,另外計(jì)算過程中可使用計(jì)算器,進(jìn)一步加深對(duì)乘方意義的理解(五)作業(yè)P56頁(yè)1、2說明:這兩個(gè)習(xí)題是對(duì)課本上例題的簡(jiǎn)單重復(fù)和模仿,通過本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成??傊谡麄€(gè)教學(xué)設(shè)計(jì)中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來,不斷從舊知識(shí)中獲得新的認(rèn)識(shí),通過不斷進(jìn)行聯(lián)系比較,讓學(xué)生主動(dòng)自覺地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進(jìn)而優(yōu)化了整個(gè)教學(xué)。

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的混合運(yùn)算說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的混合運(yùn)算說課稿

    一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(jí)(上)義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材第2章第6節(jié)第一課時(shí)的內(nèi)容。它是學(xué)生在已經(jīng)掌握有理數(shù)加法、減法、乘法、除法、乘方以后進(jìn)行學(xué)習(xí)的。它是建立在有理數(shù)的有關(guān)概念和各種運(yùn)算的意義及法則的基礎(chǔ)上進(jìn)行的綜合性運(yùn)算。它是本章的重點(diǎn)之一,是以上各種運(yùn)算的繼續(xù)和發(fā)展,對(duì)學(xué)生運(yùn)算能力和數(shù)學(xué)學(xué)習(xí)能力的培養(yǎng),有著十分重要的意義,同時(shí)也是初中數(shù)學(xué)運(yùn)算的重要內(nèi)容之一,是后續(xù)學(xué)習(xí)的基礎(chǔ)。(二)教學(xué)目標(biāo)的確立:參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)技能目標(biāo):(1)掌握有理數(shù)的混合運(yùn)算法則及運(yùn)算順序。(2)熟練的進(jìn)行有理數(shù)的混合運(yùn)算。2、能力目標(biāo):培養(yǎng)學(xué)生的觀察能力和運(yùn)算能力。3、情感與態(tài)度目標(biāo):(1)培養(yǎng)學(xué)生在計(jì)算前認(rèn)真審題,確定運(yùn)算順序,計(jì)算中按步驟審慎進(jìn)行,并養(yǎng)成驗(yàn)算的良好的學(xué)習(xí)習(xí)慣。

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的乘法(1)說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的乘法(1)說課稿

    5. 作業(yè): 作業(yè)我同樣選取不同題型的五個(gè)計(jì)算題,目的是想查看學(xué)生學(xué)的效果如何,是否對(duì)哪類題型還留有疑問。 6. 自我評(píng)價(jià): 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學(xué)的知識(shí)穿插在學(xué)與練當(dāng)中,充分地利用了課堂有限的時(shí)間,并且能讓學(xué)生邊學(xué)邊練,及時(shí)鞏固。 當(dāng)然這堂課也有很多不足之處,我覺得自己對(duì)于課堂上學(xué)生做練習(xí)時(shí)出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應(yīng)該吸取經(jīng)驗(yàn)教訓(xùn),再以后的教學(xué)中加以改進(jìn)。 另外對(duì)于多個(gè)有理數(shù)相乘時(shí)的符號(hào)問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習(xí)中再做些補(bǔ)充,讓學(xué)生加深理解。從中我也得到一個(gè)教訓(xùn),再以后的教學(xué)工作中,我還應(yīng)該多學(xué)習(xí)教學(xué)方法,多思考如何歸納知識(shí)點(diǎn),才能更好地幫學(xué)生形成一個(gè)系統(tǒng)的知識(shí)系統(tǒng)!

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的除法說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的除法說課稿

    五、兩點(diǎn)說明。(一)、板書設(shè)計(jì)這節(jié)課的板書我是這樣設(shè)計(jì)的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語(yǔ)言轉(zhuǎn)化成符號(hào)語(yǔ)言的能力,板書中只出現(xiàn)兩種法則的符號(hào)表示,從而加深他們對(duì)法則的理解,板書右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結(jié),重點(diǎn)寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。有理數(shù)的除法板演練習(xí):有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時(shí)間分配:教學(xué)過程中的八個(gè)環(huán)節(jié)所需的時(shí)間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。

  • 北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的加法(一)說課稿

    北師大初中數(shù)學(xué)七年級(jí)上冊(cè)有理數(shù)的加法(一)說課稿

    在答案的匯總過程中,要肯定學(xué)生的探索,愛護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對(duì)學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評(píng)價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號(hào)情況(可遇見情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對(duì)值相加;加數(shù)的絕對(duì)值相減)⑤ 從和的符號(hào)確定方面(同號(hào)兩數(shù)相加符號(hào)的確定;異號(hào)兩數(shù)相加符號(hào)的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.

上一頁(yè)123...8910111213141516171819下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!