解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢(shì),可通過(guò)圖象來(lái)研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來(lái),完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:根據(jù)“全等三角形的對(duì)應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來(lái)求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問(wèn)題時(shí)要將所求的角與已知角通過(guò)全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來(lái).三、板書設(shè)計(jì)1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過(guò)練習(xí)來(lái)理解全等三角形的性質(zhì)并滲透符號(hào)語(yǔ)言推理.通過(guò)實(shí)例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡(jiǎn)單的實(shí)際問(wèn)題
一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是( )A.摸出的4個(gè)球中至少有一個(gè)是白球B.摸出的4個(gè)球中至少有一個(gè)是黑球C.摸出的4個(gè)球中至少有兩個(gè)是黑球D.摸出的4個(gè)球中至少有兩個(gè)是白球解析:∵袋子中只有3個(gè)白球,而有5個(gè)黑球,∴摸出的4個(gè)球可能都是黑球,因此選項(xiàng)A是不確定事件;摸出的4個(gè)球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個(gè)球是黑球,∴選項(xiàng)B是必然事件;摸出的4個(gè)球可能為1黑3白,∴選項(xiàng)C是不確定事件;摸出的4個(gè)球可能都是黑球或1白3黑,∴選項(xiàng)D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會(huì)呈現(xiàn)穩(wěn)定性,即頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng).隨著試驗(yàn)次數(shù)的增加,擺動(dòng)的幅度有越來(lái)越小的趨勢(shì).2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會(huì)穩(wěn)定到某一個(gè)常數(shù)p,于是,我們用p這個(gè)常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過(guò)程中,學(xué)生通過(guò)對(duì)比頻率與概率的區(qū)別,體會(huì)到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問(wèn)題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:平行線中的拐點(diǎn)問(wèn)題,通常需過(guò)拐點(diǎn)作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過(guò)點(diǎn)E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無(wú)論平行線中的何種問(wèn)題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問(wèn)題分解到簡(jiǎn)單模型中,問(wèn)題便迎刃而解.三、板書設(shè)計(jì)平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵(lì)學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動(dòng)口、動(dòng)手、動(dòng)腦中學(xué)數(shù)學(xué)
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問(wèn)題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問(wèn)題經(jīng)歷一般規(guī)律的探索過(guò)程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問(wèn)題中得到關(guān)系式這一過(guò)程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過(guò)程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
方法總結(jié):判斷軸對(duì)稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對(duì)稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對(duì)稱?解析:根據(jù)軸對(duì)稱的意義,經(jīng)過(guò)翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對(duì)稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對(duì)稱的概念展開想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過(guò)程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對(duì)稱圖形的定義2.對(duì)稱軸3.兩個(gè)圖形成軸對(duì)稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒(méi)有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒(méi)有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒(méi)有實(shí)數(shù)根.沒(méi)有特殊要求時(shí),一般不用配方法.
三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再?gòu)闹须S機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,每個(gè)轉(zhuǎn)盤都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
有三種購(gòu)買方案:購(gòu)A型0臺(tái),B型10臺(tái);A型1臺(tái),B型9臺(tái);A型2臺(tái),B型8臺(tái);(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時(shí),購(gòu)買資金為12×1+10×9=102(萬(wàn)元);當(dāng)x=2時(shí),購(gòu)買資金為12×2+10×8=104(萬(wàn)元).答:為了節(jié)約資金,應(yīng)選購(gòu)A型1臺(tái),B型9臺(tái).方法總結(jié):此題將現(xiàn)實(shí)生活中的事件與數(shù)學(xué)思想聯(lián)系起來(lái),屬于最優(yōu)化問(wèn)題,在確定最優(yōu)方案時(shí),應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計(jì)應(yīng)用一元一次不等式解決實(shí)際問(wèn)題的步驟:實(shí)際問(wèn)題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實(shí)際問(wèn)題確定答案本節(jié)課通過(guò)實(shí)例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過(guò)程中,可通過(guò)類比列一元一次方程解決實(shí)際問(wèn)題的方法來(lái)學(xué)習(xí),讓學(xué)生認(rèn)識(shí)到列方程與列不等式的區(qū)別與聯(lián)系.
把解集在數(shù)軸上表示出來(lái),并將解集中的整數(shù)解寫出來(lái).解析:分別計(jì)算出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問(wèn)題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時(shí),先解每一個(gè)不等式,再確定各個(gè)不等式組的解集的公共部分.
方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過(guò)程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號(hào);(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過(guò)類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時(shí)有所不同.如果這個(gè)系數(shù)是正數(shù),不等號(hào)的方向不變;如果這個(gè)系數(shù)是負(fù)數(shù),不等號(hào)的方向改變.這也是這節(jié)課學(xué)生容易出錯(cuò)的地方.教學(xué)時(shí)要大膽放手,不要怕學(xué)生出錯(cuò),通過(guò)學(xué)生犯的錯(cuò)誤引起學(xué)生注意,理解產(chǎn)生錯(cuò)誤的原因,以便在以后的學(xué)習(xí)中避免出錯(cuò).
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個(gè)反比例函數(shù)的表達(dá)式;(2)根據(jù)表達(dá)式完成上表。教師巡視個(gè)別輔導(dǎo),學(xué)生完畢教師給予評(píng)估肯定。II鞏固練習(xí):限時(shí)完成課本“隨堂練習(xí)”1-2題。教師并給予指導(dǎo)。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過(guò)生活中的例子,探索學(xué)習(xí)了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對(duì)兩種變化量,并且這兩個(gè)變化的量可以寫成 (k為常數(shù),k≠0)同時(shí)要注意幾點(diǎn)::①常數(shù)k≠0;②自變量x不能為零(因?yàn)榉帜笧?時(shí),該式?jīng)]意義);③當(dāng) 可寫為 時(shí)注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個(gè)變量相對(duì)應(yīng) 的任意一對(duì)對(duì)應(yīng)值的積來(lái)求得,只要k確定了,這個(gè)函數(shù)就確定了。
請(qǐng)寫出 推理過(guò)程:∵ ,在兩邊同時(shí)加上1得, + = + .兩邊分別通分得: 思考:請(qǐng)仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質(zhì):猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導(dǎo)學(xué)生從上述實(shí)例中找出證明方法)等比性質(zhì):如果 ( ),那么 = .思考:等比性質(zhì)中,為什么要 這個(gè)條件?三、 鞏固練習(xí):1.在相同時(shí)刻的物高與影長(zhǎng)成比例,如果一建筑在地面上影長(zhǎng)為50米,高為1.5米的測(cè)竿的影長(zhǎng)為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結(jié):1.比例的基本性質(zhì):a:b=c:d ;2. 合比性質(zhì):如果 ,那么 ;3. 等比性質(zhì):如果 ( ),五、 布置作業(yè):課本習(xí)題4.2
方法三:一個(gè)同學(xué)先畫兩條等長(zhǎng)的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點(diǎn)C,連接BC、CD,就得到了一個(gè)四邊形,猜一猜,這是什么四邊形?請(qǐng)你畫一畫。通過(guò)探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁(yè)例2 四、課堂檢測(cè)1、下列判別錯(cuò)誤的是( )A.對(duì)角線互相垂直,平分的四邊形是菱形. B、對(duì)角線互相垂直的平行四邊形是菱形C.有一條對(duì)角線平分一組對(duì)角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個(gè)四邊形是菱形的是( )A.兩條對(duì)角線相等 B.兩條對(duì)角線互相垂直C.兩條對(duì)角線相等且垂直 D.兩條對(duì)角線互相垂直平分3、要判斷一個(gè)四邊形是菱形,可以首先判斷它是一個(gè)平行四邊形,然后再判定這個(gè)四邊形的一組__________或兩條對(duì)角線__________.4、已知:如圖 ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
2.如何找一條線段的黃金分割點(diǎn),以及會(huì)畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過(guò)試驗(yàn)來(lái)確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過(guò)多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書設(shè)計(jì)
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長(zhǎng)CD到點(diǎn)E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說(shuō)明理由。答案:四邊形ACBE是矩形.因?yàn)镃D是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因?yàn)镈E=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對(duì)角線相等且互相平分的四邊形是矩形)。四、課堂檢測(cè):1.下列說(shuō)法正確的是( )A.有一組對(duì)角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對(duì)角線互相平分的四邊形是矩形 D.對(duì)角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說(shuō)法是否正確(1)有一個(gè)角是直角的四邊形是矩形 ( )(2)四個(gè)角都是直角的四邊形是矩形 ( )(3)四個(gè)角都相等的四邊形是矩形 ( ) (4)對(duì)角線相等的四邊形是矩形 ( )(5)對(duì)角線相等且互相垂直的四邊形是矩形 ( )(6)對(duì)角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請(qǐng)?jiān)偬砑右粋€(gè)條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
1. _____________________________________________2. _____________________________________________你會(huì)計(jì)算菱形的周長(zhǎng)嗎?三、例題精講例1.課本3頁(yè)例1例2.已知:在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測(cè):1.已知四邊形ABCD是菱形,O是兩條對(duì)角線的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長(zhǎng)是________cm.2.菱形ABCD的周長(zhǎng)為40cm,兩條對(duì)角線AC:BD=4:3,那么對(duì)角線AC=______cm,BD=______cm.3.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對(duì)角線長(zhǎng)為12厘米,則別一條對(duì)角線長(zhǎng)為________厘米.5.菱形的兩條對(duì)角線把菱形分成全等的直角三角形的個(gè)數(shù)是( ).(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長(zhǎng)和面積
(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長(zhǎng)度 .27.1-6教師活動(dòng):教師出示例題,提出問(wèn)題;學(xué)生活動(dòng):學(xué)生通過(guò)例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長(zhǎng)度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長(zhǎng)度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語(yǔ)言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁(yè)習(xí)題4.4