提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中七年級數學上冊生活中的立體圖形教案1

  • 北師大初中數學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數學九年級上冊用配方法求解簡單的一元二次方程2教案

    二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當的數,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 北師大版小學數學五年級上冊《組合圖形的面積》說課稿

    北師大版小學數學五年級上冊《組合圖形的面積》說課稿

    (二)導學釋疑在這一環(huán)節(jié)中,我首先用課件出示例題“智慧老人準備給客廳鋪上地板,算一算智慧老人客廳面積有多大?”,創(chuàng)設了智慧老人家鋪地板遇到困難請同學們幫忙的情境,引導學生通過以下三方面展開獨學、對學、群學,以達成學習目標:1.我們不妨先來估算一下客廳的面積大約是多少?(設計估一估的教學活動,并不是蜻蜓點水,而是在學生思考之后,有意識的引導,從而培養(yǎng)學生的估算意識,同時也是對后面精算的解決方法的一個鋪墊和啟示。)2.獨立思考,小組交流,展示匯報學習情況(這是本節(jié)課的重要環(huán)節(jié),在學生解決組合圖形面積時,重視把學生的思維過程充分暴露出來,首先,學生通過自己獨立思考,得出解決問題的方法;然后通過小組和全班交流,使學生學會了別人的方法;最后,從這些方法中,比較、反思、知道最簡便的方法。)3.看教科書88頁內容。(一方面可以讓學生對照教科書檢查自己的探究過程,另一方面可以讓學生對所學知識進行內化整理)

  • 北師大初中八年級數學下冊利用四邊形邊的關系判定平行四邊形教案

    北師大初中八年級數學下冊利用四邊形邊的關系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質,解題的關鍵是根據條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 北師大初中八年級數學下冊平行四邊形的判定定理3與兩平行線間的距離教案

    北師大初中八年級數學下冊平行四邊形的判定定理3與兩平行線間的距離教案

    (2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結:本題考查了平行四邊形的判定和性質,勾股定理,平行四邊形的面積,掌握定理是解題的關鍵.三、板書設計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質的綜合.本節(jié)課的教學主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學生進行合作交流.在解決有關平行四邊形的問題時,要根據其判定和性質綜合考慮,培養(yǎng)學生的邏輯思維能力.

  • 北師大初中九年級數學下冊解直角三角形2教案

    北師大初中九年級數學下冊解直角三角形2教案

    首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

  • 北師大初中九年級數學下冊圓內接正多邊形教案

    北師大初中九年級數學下冊圓內接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中九年級數學下冊二次函數與一元二次方程1教案

    北師大初中九年級數學下冊二次函數與一元二次方程1教案

    解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.

  • 北師大初中九年級數學下冊商品利潤最大問題1教案

    北師大初中九年級數學下冊商品利潤最大問題1教案

    (2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數,即可求得函數的解析式;(2)利用(1)得到的兩個解析式,結合二次函數與一次函數的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數,是解決問題的關鍵.

  • 二年級數學下冊第三單元數圖形的運動教案

    二年級數學下冊第三單元數圖形的運動教案

    一、游戲活動激趣,認識對稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機、梳子”的一部分,分男、女生猜。2、認識對稱物體:1)師質疑:為什么女生猜得又快又準呢?2)小結:像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱物體。(板書:對稱)二、猜想驗證新知,認識軸對稱圖形(一)初步感知對稱圖形1、將“剪刀、飛機、扇子”等對稱物體抽象出平面圖形,讓學生觀察,這些平面圖形還是不是對稱的。2、師小結:像這樣的圖形,叫做對稱圖形。(板書:圖形)(二)猜想驗證對稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學生觀察。師:這些平面圖形是不是對稱圖形?怎樣證明它們是不是對稱圖形?

  • 北師大初中九年級數學下冊30°,45°,60°角的三角函數值2教案

    北師大初中九年級數學下冊30°,45°,60°角的三角函數值2教案

    教學目標:1.能利用三角函數概念推導出特殊角的三角函數值.2.在探索特殊角的三角函數值的過程中體會數形結合思想.教學重點:特殊角30°、60°、45°的三角函數值.教學難點:靈活應用特殊角的三角函數值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數量關系?如果∠A=45°,那么三邊長有什么特殊的數量關系?二、導讀:仔細閱讀課本內容后完成下面填空:

  • 北師大初中九年級數學下冊三角函數的應用2教案

    北師大初中九年級數學下冊三角函數的應用2教案

    教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的應用.2.能夠把實際問題轉化為數學問題,能夠借助于計算器進行有關三角函數的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數學活動,提高學習數學、學好數學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的作用.2.發(fā)展學生數學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現法教具準備多媒體演示

  • 北師大初中九年級數學下冊三角函數的計算2教案

    北師大初中九年級數學下冊三角函數的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據tan x= ,可以求出tan x的值,然后根據例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數學下冊直線和圓的位置關系及切線的性質教案

    北師大初中九年級數學下冊直線和圓的位置關系及切線的性質教案

    解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

  • 北師大初中九年級數學下冊圓周角和圓心角的關系教案

    北師大初中九年級數學下冊圓周角和圓心角的關系教案

    解析:點E是BC︵的中點,根據圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

  • 北師大初中數學九年級上冊幾何問題及數字問題與一元二次方程2教案

    北師大初中數學九年級上冊幾何問題及數字問題與一元二次方程2教案

    三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關緝私巡邏艇在東海海域執(zhí)行巡邏任務時,發(fā)現在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?

  • 北師大初中數學九年級上冊利用一元二次方程解決面積問題2教案

    北師大初中數學九年級上冊利用一元二次方程解決面積問題2教案

    四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設計意圖】發(fā)現幾何圖形中隱蔽的相等關系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

  • 北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

  • 北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數學九年級上冊營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結果又一次打折后才售完.經結算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術團生產一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應.經核算,這24套演出服的成本正好是原定生產這批演出服的利潤.這批演出服共生產了多少套?8、某商店經營T恤衫,已知成批購進時單價是2.5元。根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

上一頁123...111213141516171819202122下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!