[說目標]1、對滾球感興趣,充分體驗在不同路線、不同質地的材料上花樣滾球的樂趣。2、能手眼協(xié)調控制球向指定方向滾動。3、有帶好球寶寶的責任感。[說過程] 結合中班孩子的年齡特點,整個活動都圍繞“帶球寶寶去旅行”的游戲情節(jié)展開。根據(jù)活動目標和重點難點,我在提前和孩子們嘗試球的各種玩法后:(一)首先做熱身運動?! ±蠋熀秃⒆右黄鸢殡S“鈴兒響叮當”的音樂做簡單的球操,這是熱身也是個準備活動(哼唱著簡單徒手示范)。在舒展身體的時候,注意重點活動腰、手腕、膝蓋、腿、腳腕等部位,因為這些部位的活動和滾球的動作緊密相關,同時通過球操,孩子們和球自然地成為好朋友。(二)基本部分:1、在這個基礎上,設置游戲情節(jié)并貫穿活動的始終。一開始,用游戲的口吻“今天,咱們要帶著球寶寶去旅行啦”吸引孩子,孩子們的興趣一下子就調動起來了。2、然后,準備多種材料,比如拱形小橋、墊子、爬坡、大紙箱子,并巧妙利用它們設計成難易不同的旅行路線,使孩子們在游戲中充分體驗花樣滾球的樂趣并且自然地掌握怎樣控制球向指定方向滾動。
【學習目標】1.知識與技能:加深對燃燒條件的認識,進一步了解滅火的原理。2.過程與方法:體驗實驗探究的過程,學習利用實驗探究的方法研究化學。3.情感態(tài)度與價值觀:利用化學知識解釋實際生活中的具體問題,使學生充分體會到化學來源于生活,服務于社會?!緦W習重點】通過物質燃燒條件的探究,學習利用控制變量的思想設計探究實驗,說明探究實驗的一般過程和方法。【學習難點】利用控制變量的思想設計對照實驗進行物質燃燒條件的探究?!菊n前準備】《精英新課堂》:預習學生用書的“早預習先起步”?!睹麕煖y控》:預習贈送的《提分寶典》。情景導入 生成問題1.復習:什么叫燃燒?燃燒條件有哪些?今天自己設計實驗來進行探究。2.明確實驗目標,導入新課。合作探究 生成能力學生閱讀課本P150的相關內容并掌握以下內容。實驗用品:鑷子、燒杯、坩堝鉗、三腳架、薄銅片、酒精、棉花、乒乓球、濾紙、蠟燭。你還需要的實驗用品:酒精燈、水。1.實驗:用棉花分別蘸酒精和水,放到酒精燈火焰上加熱片刻。上述實驗中我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?如果在酒精燈上加熱時間較長,會發(fā)生什么現(xiàn)象?答:蘸酒精的棉花燃燒,蘸水的棉花沒有燃燒,說明燃燒需要有可燃物。如果加熱時間較長,水蒸發(fā)后,蘸水的棉花也會燃燒。2.如圖所示,進行實驗:我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?答:在酒精燈火焰上加熱乒乓球碎片和濾紙碎片,都能燃燒,說明二者都是可燃物。放在銅片兩側給它們加熱后可看到乒乓球碎片先燃燒,說明燃燒需要溫度達到可燃物的著火點。3.你能利用蠟燭和燒杯(或選擇其他用品)設計一個簡單實驗證明燃燒需要氧氣(或空氣)嗎?答:點燃兩支相同的蠟燭,然后在一支蠟燭上扣住一只杯子,看到被杯子扣住的蠟燭一會兒就熄滅,說明燃燒的條件之一是需要氧氣。
第一課時教學過程:1.播放《中學時代》歌曲視頻,讓學生感受歌曲歡快熱烈,充滿活力的情緒,進入學習的情境。2.討論:對剛剛看到聽到的歌曲進行初步的分析,如:歌曲的情緒是什么樣的?歌曲的速度為什么用“中速稍快”而不用慢速、很慢來表現(xiàn)?歌曲演唱有什么特點?等等。3.第二邊播放歌曲視頻,結合討論的問題再次聆聽,進一步感受歌曲的力度\速度\演唱情緒。4.學唱《中學時代》,邊唱邊體會歌曲的意境.注意輕聲哼唱。5.請學生仔細觀察,找一找\議一議\談一談,簡單分析歌曲的特點。6.在手風琴伴奏下,進一步練唱歌曲,直至熟練演唱。7.將學生分成兩組,比一比那個組演唱的聲音洪亮,情緒飽滿,音高、節(jié)奏準確。8.討論:這首歌曲還可以采取哪些演唱形式?(獨唱、領唱等)9.教師可以按照學生討論的意見,采用多種方法和演唱形式練唱,邊唱邊拍手打節(jié)奏.還可由自主設計其它方式進行表演。課堂練習:進一步練習準確掌握曲中節(jié)奏x xx 0 ( xxxx)演唱與間奏的銜接。作業(yè)安排:視唱歌曲前半部分。
活動準備: 背景圖(馬路)、斑馬圖片、斑馬線 活動過程: 一、故事導入 1、講述故事“有一群快樂的…………主動放慢了速度”。 1)今天有小動物到我們班級來,他們要給我們說個好聽的故事。故事的名字是《馬路上的斑馬線》。 2)小動物們是怎么過馬路的?(坐在斑馬叔叔的背上,讓斑馬叔叔馱著過馬路) 3)可是斑馬叔叔每天這么背小動物過馬路,他多累啊,你們有沒有好辦法?(幼兒想辦法) 4)你們想了很多好辦法,小動物們也想到好辦法了,讓我們來聽聽他們的辦法。 2、講述故事“聰明的小猴子想出了一個好辦法……就一點也不害怕了”。
【教學目標】知識目標:理解直線的點斜式方程、斜截式方程、橫截距、縱截距的概念;掌握直線的點斜式方程、斜截式方程的確定.能力目標:通過求解直線的點斜式方程和斜截式方程,培養(yǎng)學生的數(shù)學思維能力與數(shù)形結合的數(shù)學思想.情感目標:通過學習直線的點斜式方程和斜截式方程,體會數(shù)形結合的直觀感受.【教學重點】直線的點斜式方程、斜截式方程的確定.【教學難點】直線的點斜式方程、斜截式方程的確定.
【教學重點】直線的點斜式方程、斜截式方程的確定.【教學難點】直線的點斜式方程、斜截式方程的確定.【教學過程】1、對特殊三角函數(shù)進行鞏固復習;表1 內特殊三角函數(shù)值 不存在圖1 特殊三角形2、鞏固復習直線的傾斜角和斜率相關內容;直線的傾斜角:,;直線的斜率: , ;設點為直線l上的任意兩點,當時,
解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結:無論平行線中的何種問題,都可轉化到基本模型中去解決,把復雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設計平行線的性質:性質1:兩條平行線被第三條直線所截,同位角相等;性質2:兩條平行線被第三條直線所截,內錯角相等;性質3:兩條平行線被第三條直線所截,同旁內角互補.平行線的性質是幾何證明的基礎,教學中注意基本的推理格式的書寫,培養(yǎng)學生的邏輯思維能力,鼓勵學生勇于嘗試.在課堂上,力求體現(xiàn)學生的主體地位,把課堂交給學生,讓學生在動口、動手、動腦中學數(shù)學
這是本節(jié)課的重點。讓同學們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關系?這兩條折痕在數(shù)量上有什么關系?這時有的同學會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質定理的猜想。接著我會讓同學們理論證明,并轉化為符號語言,注意分清題設和結論。有的同學會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質定理。
問題1:你能證明“兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內角,且∠1與∠2互補.求證:a∥b
請寫出 推理過程:∵ ,在兩邊同時加上1得, + = + .兩邊分別通分得: 思考:請仿照上面的方法,證明“如果 ,那么 ”.(3) 等比性質:猜想 ( ),與 相等嗎?能 否證明你的猜想?(引導學生從上述實例中找出證明方法)等比性質:如果 ( ),那么 = .思考:等比性質中,為什么要 這個條件?三、 鞏固練習:1.在相同時刻的物高與影長成比例,如果一建筑在地面上影長為50米,高為1.5米的測竿的影長為2.5米 ,那么,該建筑的高是多少米?2.若 則 3.若 ,則 四、 本課小結:1.比例的基本性質:a:b=c:d ;2. 合比性質:如果 ,那么 ;3. 等比性質:如果 ( ),五、 布置作業(yè):課本習題4.2
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導入同學們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產流水線上生產如圖所示的工件,其中∠α稱為工件的中心角,生產要求∠α的標準角度為30°±1°,一名質檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學的知識分析一下,該名質檢員采用的是哪種比較方法?你還能給該質檢員設計更好的質檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質檢中,采用疊合法比較快捷.
新建成的紅星中學,首次招收七年級新生12個班共500人,學校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設計一個調查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應圍繞這兩個因素進行.解:調查方案如下:(1)對全體新生的到校方式進行問卷調查.調查問卷如下:你到校的方式是騎自行車嗎?A.經常是 B.不經常是C.很少是 D.從不是(2)根據(jù)調查問卷結果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學校的建設規(guī)劃、財力等因素確定自行車車棚的面積.方法總結:確定調查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調查,并將調查結果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:
1. 小明的腳長23.6厘米,鞋號應是 號。2.小亮的腳長25.1厘米,鞋號應是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結:剛才同學們都體會到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應用(四)反饋練習課內練習以下是某校七年級南,女生各10名右眼裸視的檢測結果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學生右眼視力跟性別有關嗎?為了回答這個問題,你將怎樣處理這組數(shù)據(jù)?你的結論是什么?(五). 歸納小結,體味數(shù)學快樂通過本節(jié)課的學習,你有那些收獲?(課堂小結交給學生)數(shù)據(jù)收集的方法:直接觀察、測量、調查、實驗、查閱文獻資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學生可能還會指出鞋碼和腳長之間的關系等)
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質基本性質:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經歷比例的性質的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結:矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經歷矩形的概念和性質的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。