方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對(duì)面有一路燈,當(dāng)小華筆直地往前走時(shí),他在這盞路燈下的影子也隨之向前移動(dòng).小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習(xí)題5.1八、板書設(shè)計(jì)投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個(gè)話題,接著經(jīng)歷實(shí)踐、探索的過程,掌握了中心投影的含義,進(jìn)一步根據(jù)燈光光線的特點(diǎn),由實(shí)物與影子來確定路燈的位置,能畫出在同一時(shí)刻另一物體的影子,還要求大家不僅要自己動(dòng)手實(shí)踐,還要和同伴互相交流.同時(shí)要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實(shí)踐操作能力,合作交流能力,語言表達(dá)能力.
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長的比值為2:7,某 天同一時(shí)刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對(duì)角線長為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
④聯(lián)系生活實(shí)際解決身邊的問題,讓同學(xué)初步感受數(shù)學(xué)與日常生活的密切聯(lián)系,體驗(yàn)數(shù)學(xué)的應(yīng)用,促進(jìn)學(xué)生的發(fā)展。接下來,我再具體談一談這堂課的教學(xué)過程。3、說教學(xué)過程第一環(huán)節(jié):創(chuàng)設(shè)情境,激qing導(dǎo)入。同學(xué)們你們看屏幕上的是什么?(出示圖片)那么自行車車輪是什么形狀的?為什么車輪要設(shè)計(jì)成圓形?這里面有什么奧妙呢?學(xué)了今天的內(nèi)容大家就會(huì)明白的。這節(jié)課我們就走進(jìn)圓的世界去探尋其中的奧妙。板書課題:圓的認(rèn)識(shí)設(shè)計(jì)意圖:通過生活中實(shí)際例子引入課題,一方面引起學(xué)生的學(xué)習(xí)興趣,另一方面為學(xué)習(xí)新知識(shí)做了鋪墊,從思想上吸引了學(xué)生主動(dòng)參與學(xué)習(xí)的活動(dòng)。這一環(huán)節(jié)的設(shè)計(jì),主要是想體現(xiàn)數(shù)學(xué)就在我們的身邊,從而激發(fā)學(xué)生學(xué)習(xí)的興趣及學(xué)習(xí)的積極性。
《比的化簡》是北師大版六年級(jí)上冊(cè)第52——53頁的教學(xué)內(nèi)容,主要學(xué)習(xí)化簡比的方法。教材聯(lián)系學(xué)生的生活創(chuàng)設(shè)問題情境,讓學(xué)生在解決問題的過程中加深對(duì)比的意義的理解,進(jìn)一步感受比、除法、分?jǐn)?shù)的關(guān)系,體會(huì)化簡比的必要性,學(xué)會(huì)化簡比的方法。在這之前,學(xué)生早已學(xué)過“商不變的性質(zhì)”和“分?jǐn)?shù)的基本性質(zhì)”,最近又認(rèn)識(shí)了比,初步理解了比的意義,以及比與除法、分?jǐn)?shù)的關(guān)系,大部分學(xué)生能較為熟練地求比值。比較而言,實(shí)際上化簡比與求比值的方法有相通之處,那么借助知識(shí)的遷移能幫助學(xué)生順利理解掌握新知識(shí)。二、說教學(xué)目標(biāo):知識(shí)與能力:會(huì)運(yùn)用商不變的性質(zhì)或分?jǐn)?shù)的基本性質(zhì)化簡比。過程與方法:在實(shí)際情境中,讓學(xué)生體會(huì)化簡比的必要性,在觀察、比較中理解什么是化簡比,,并能解決一些簡單的實(shí)際問題。情感、態(tài)度與價(jià)值觀:促進(jìn)知識(shí)遷移,培養(yǎng)學(xué)生的概括能力。體驗(yàn)知識(shí)的相通性以及數(shù)學(xué)與生活的聯(lián)系。
接下來引導(dǎo)學(xué)生分析題中數(shù)量關(guān)系:題目要分配什么?按照什么分配?重點(diǎn)思考討論:從3:2這個(gè)比中,你能知道什么?接下來鼓勵(lì)小組合作嘗試多種方法解答,重點(diǎn)理解按比分配的方法。2、小結(jié):按比分配的應(yīng)用題有什么結(jié)構(gòu)特點(diǎn)?怎樣解答這樣的應(yīng)用題?這樣設(shè)計(jì)為學(xué)生提供自主探索的空間。所以在教學(xué)中可以靈活地依據(jù)提出的方法調(diào)換教學(xué)順序,并引導(dǎo)學(xué)生掌握兩種不同的解題方法。安排學(xué)生的小組討論方式能使學(xué)生一開始就暢所欲言,把幾種不同思路比較和聯(lián)系起來,在理解的基礎(chǔ)上才能更好的掌握方法,并注意培養(yǎng)學(xué)生的檢驗(yàn)?zāi)芰?。第三個(gè)環(huán)節(jié):多層訓(xùn)練,形成技能。練習(xí)是數(shù)學(xué)課堂教學(xué)一個(gè)重要環(huán)節(jié),我設(shè)計(jì)的練習(xí)題力求做到從易到難,由淺入深,有層次,有坡度,新舊知識(shí)融合恰當(dāng),形成技能技巧,開拓思維,發(fā)展能力,達(dá)到練習(xí)的預(yù)期目的。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出;“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、學(xué)生之間交往互動(dòng)與共發(fā)展的程?!边@節(jié)課中我盡量體現(xiàn)這一新理念,可是教完之后,通過大家的評(píng)課,使我知道了自己很多的不足。我感受最深的是在這節(jié)課的教學(xué)中,要想學(xué)生能理解運(yùn)算順序,最好的方法是圖文結(jié)合教學(xué),讓學(xué)生在具體情境中去理解運(yùn)算順序,我覺得這點(diǎn)建議挺好的,使我明白了在今后教學(xué)中要注意這點(diǎn),其實(shí),在課前,我也想到了這點(diǎn),只是在教學(xué)中又忽視了。就如聶老師說,將沒摘和摘走的圖片進(jìn)對(duì)比,或者將這個(gè)做成動(dòng)畫這樣更形象直觀,這樣孩子們更能加深理解。還有就是課件中出先的一個(gè)錯(cuò)誤就是將加減法算計(jì)都寫成了加法算式,這是我的失誤。我這節(jié)課的重點(diǎn)是引導(dǎo)學(xué)生發(fā)現(xiàn)問題、提出問題并解答問題,但我覺得學(xué)生的課堂氣氛還沒有完全的調(diào)動(dòng)。
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
雖然在此之前已經(jīng)聽過多節(jié)有關(guān)的研討課,但臨到自己教學(xué)時(shí)才真正體會(huì)到本課教學(xué)的艱難。一是信息化時(shí)代對(duì)郵政編碼的沖突。其實(shí)我在教學(xué)前也僅僅只知道學(xué)校和家庭住址的郵編,至于郵政編碼的結(jié)構(gòu)含義等是完全陌生。在課堂前測中了解到,全班僅3人有寫信寄信的經(jīng)歷(這三名學(xué)生的老家都遠(yuǎn)離湖北省),他們知道老家的郵編,全班有半數(shù)左右的家庭收集不到已經(jīng)郵寄過的舊信封。可以說在學(xué)習(xí)本課前師生對(duì)郵政編碼都是知之甚少,教師本身都只“半勺水”,何以給學(xué)生“一杯水”?雖然在課前布置學(xué)生收集了一些有關(guān)郵政編碼的知識(shí),自己也進(jìn)行了大量的查詢,但在實(shí)際教學(xué)中仍舊倍感吃力。如有學(xué)生質(zhì)疑“為什么書上北京人民出版社的郵編是100008,它的第三、四位都是0呢”;“為什么我們學(xué)校的郵編4300XX第三、四位也是0呢”;“郵區(qū)是不是指什么市?”“郵區(qū)與市、區(qū)、縣有什么關(guān)系?”一個(gè)接一個(gè)問題“炮轟”過來,著實(shí)招架不住。
一、教材分析《圓柱的表面積》是九年義務(wù)教育小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)(人教版)第21-22頁例3例4,第21-22頁“做一做”,練習(xí)四的教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生已經(jīng)探索并掌握?qǐng)A柱的基本特征的基礎(chǔ)上教學(xué)的。同時(shí),此前對(duì)圓面積公式的探索以及對(duì)長方體特征和表面積計(jì)算方法的探索也為了學(xué)習(xí)本課內(nèi)容奠定了知識(shí)的基礎(chǔ)。教材設(shè)置了兩個(gè)例題。例3主要引導(dǎo)學(xué)生通過動(dòng)手操作探索圓柱側(cè)面積的計(jì)算方法。然后,通過例4引導(dǎo)學(xué)生利用圓柱表面積的計(jì)算方法解決實(shí)際問題。教材這樣安排,意在讓學(xué)生經(jīng)歷圓柱側(cè)面積、表面積計(jì)算方法的推導(dǎo)過程,理解這些方法的來源,通過自己的操作,觀察、比較、推理、歸納等經(jīng)歷知識(shí)形成的過程,完善關(guān)于幾何形體的知識(shí)結(jié)構(gòu),豐富學(xué)生“空間與圖形”的學(xué)習(xí)經(jīng)驗(yàn),形成初步的空間觀念,為今后進(jìn)一步學(xué)習(xí)形體知識(shí)打下基礎(chǔ)。
2、教材分析本單元是在學(xué)生已經(jīng)學(xué)習(xí)了比較、分類等知識(shí)的基礎(chǔ)上學(xué)習(xí)統(tǒng)計(jì)的基本知識(shí)。為了讓學(xué)生能了解學(xué)習(xí)統(tǒng)計(jì)的必要性,教材選擇了與學(xué)生生活有密切聯(lián)系的生活情景,通過參與有趣的調(diào)查活動(dòng),使學(xué)生經(jīng)歷收集信息、處理信息的過程,了解調(diào)查的方法,學(xué)習(xí)收集、整理、描述和分析數(shù)據(jù),認(rèn)識(shí)統(tǒng)計(jì)的意義和作用。本單元學(xué)生學(xué)習(xí)的內(nèi)容主要是調(diào)查、記錄和整理結(jié)果,意在使學(xué)生體會(huì)抽樣調(diào)查的合理性和記錄方法的多樣性。學(xué)會(huì)用畫“正字”法記錄數(shù)據(jù),使結(jié)果易于整理。3、學(xué)情分析學(xué)生已經(jīng)學(xué)習(xí)了比較、分類等與統(tǒng)計(jì)相關(guān)的初步知識(shí),為本單元進(jìn)一步學(xué)習(xí)調(diào)查、記錄和整理,簡單分析數(shù)據(jù)奠定了基礎(chǔ)。在日常生活中有許多與統(tǒng)計(jì)相關(guān)的生活場景,只是學(xué)生沒有發(fā)現(xiàn),需要教師在課堂上引導(dǎo)學(xué)生研究和體會(huì):“生活中處處有數(shù)學(xué)”“數(shù)學(xué)來源于生活”。4、教學(xué)重點(diǎn)本著2011年版數(shù)學(xué)課程標(biāo)準(zhǔn),在充分研究了新教材的基礎(chǔ)上,我把這節(jié)課教學(xué)重點(diǎn)確定為讓學(xué)生掌握如何收集數(shù)據(jù)并整理數(shù)據(jù),同時(shí)能夠進(jìn)行簡單的分析。
一、說教材1.教材分析《同級(jí)混合運(yùn)算》是九年義務(wù)教育人教版二年級(jí)下冊(cè)第五單元的教學(xué)內(nèi)容。教材創(chuàng)設(shè)了“圖書閱覽室”問題情境,目的是為了讓學(xué)生了解脫式運(yùn)算,了解沒有括號(hào)的算式里,只有加減法或只有乘除法,都要從左往右按順序計(jì)算。使他們樹立學(xué)習(xí)數(shù)學(xué)的信心,逐步提高他們的計(jì)算能力。 2.教學(xué)目標(biāo)知識(shí)目標(biāo):借助解決問題的過程讓學(xué)生明白“在同級(jí)的混合運(yùn)算中,應(yīng)從左往右依次計(jì)算”的道理。能力目標(biāo):在經(jīng)歷探索和交流的過程中,理解并掌握同級(jí)運(yùn)算的運(yùn)算順序,能正確運(yùn)用運(yùn)算順序進(jìn)行計(jì)算,并能正確進(jìn)行脫式計(jì)算的書寫。情感目標(biāo):培養(yǎng)學(xué)生養(yǎng)成先看運(yùn)算順序,再進(jìn)行計(jì)算的良好習(xí)慣,同時(shí)提高學(xué)生的計(jì)算能力。3.教學(xué)重難點(diǎn)教學(xué)重點(diǎn):理解并掌握同級(jí)運(yùn)算的運(yùn)算順序,并能正確地進(jìn)行脫式計(jì)算。教學(xué)難點(diǎn):能正確進(jìn)行脫式計(jì)算,掌握脫式計(jì)算的書寫格式。二、說教法根據(jù)新課程理念,學(xué)生已有的知識(shí)、生活經(jīng)驗(yàn),結(jié)合教材的特點(diǎn),我采用了以下教法:1、情景教學(xué)法:新課開始,讓學(xué)生通過圖書館這一情景,理解運(yùn)算順序。2、發(fā)現(xiàn)、討論法:利用我們小組合作座位優(yōu)勢,讓小組間討論、說計(jì)算過程,從而掌握計(jì)算方法。三、說學(xué)法運(yùn)用書本為載體,以觀察、比較、小組討論、推理和應(yīng)用及口算為主線,目的是為了使學(xué)生對(duì)學(xué)習(xí)有興趣和留給學(xué)生學(xué)習(xí)思考的空間。