一、說教材:1、教學內容:北師大版小學數學三年級下冊第28-29頁。2、教材簡析:這部分知識的教學是建立在上節(jié)課學習了兩位數乘兩位數的算法,以及對進位的乘法也有一定經驗的基礎上進行的,目的是使學生進一步掌握兩位數乘兩位數(進位)的算法。本節(jié)課主要通過“電影院”這一學生熟悉的生活情境,在引導學生觀察的基礎上,培養(yǎng)學生的估算意識和估算能力;讓學生在具體的教學活動中,拓展學生的思維,體驗算法策略的多樣化,進一步掌握兩位數乘兩位數(有進位)的算法,并能解決一些簡單的實際問題。二、、教學目標:▲知識與技能:(1)結合“電影院”的具體情境,進一步掌握兩位數乘兩位數(有進位)的計算方法。(2)對兩位數乘兩位數(有進位)能進行估算和計算。(3)能解決一些簡單實際問題。
1、結合具體情境,體會生活中變化的量,感覺變化的量之間的關系,認識變化特征。2、通過自主探究,合作交流,在活動過程中培養(yǎng)學生用多種方法解決問題的能力,進一步發(fā)展學生觀察、比較、概括等能力,滲透分類的數學思想。3、經歷數學活動的過程,體驗用多種方法研究問題的樂趣,感覺成功的快樂,增強學好數學的信心。教材安排了多個生活情境,以表格、圖像、關系式等不同方式呈現,目的是讓學生通過多種方式認識變化的量的特征。因此,我確定本課的教學重點是結合具體情境,感覺變化的量之間的關系,認識變化特征。六年級的學生,抽象思維得到了一定的發(fā)展,但以前從未接觸過變化的量,從之前熟悉的定向思維模式轉向多向思維模式,并認識變化特征會有一定的困難。因此,我確定本課的教學難點是用多種方式認識變化的量的變化特征。本課需要教師準備多媒體課件,為學生準備學習單。
2.放大空間,升華思考由于我對教材的二度開發(fā)留給了學生足夠的探索空間,課上學生探索數學的熱情被充分調動,我們欣喜地看到:有的學生嘗試著不同平面圖形的旋轉;有的學生只用一種平面圖形,卻旋轉出不同的立體圖形;有的學生的思維并沒有停留在表象上,而是在深入地思考產生這一現象的原因……交流時學生的發(fā)現遠遠超出了我們的想象,這份生成帶給我們的是驚喜,是贊嘆,更是“以操作促思考”的教學行為結出的碩果。3.巧用課件,形成表象本節(jié)課,我充分運用現代信息技術將平面圖形經過旋轉形成立體圖形的過程生動、逼真地再現出來,幫助學生將抽象的空間想象化為直觀,進而形成表象,深植于學生的腦海中,促進了學生空間觀念的形成。總之,在這節(jié)課上,我堅持把“促進學生發(fā)展”作為第一要素貫穿于課堂教學的始終,讓學生在充滿著民主、探究、思考的氛圍中,積極操作、主動思考,發(fā)展了學生的空間觀念。
發(fā)展應用意識,運用所學知識解決兩位數加減兩位數(不進位,不退位)的計算方法。4、教學難點學生學會在理解圖意的基礎上,自己提出數學問題,引導學生嘗試用自己的方法進行計算,體現算法多樣化的思想,進一步體會加減法的意義。二、說教學法學生已有整十數加減整十數、兩位數加減一位數(不進位、不退位)的知識作為基礎,有一小部分學生在上學前已對豎式有簡單的了解。對于看圖編故事和從圖中提出問題,前面的學習中已有過練習。這些都是本節(jié)課學生學習的前提條件。在本節(jié)課中,力圖體現出學生學習方法的轉變:從被動接受學習變?yōu)樵谧灾?、探究、合作中學習。讓學生自己提出問題,再自己想辦法解決,并能以小組為單位共同合作完成;讓學生親自體驗知識的形成過程,促進學生思維的發(fā)展。三、說教學流程(一)創(chuàng)設情境。
為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:五、說教法學法我依據“教學有法,教無定法,貴在得法”,同時為了達到既定的教學目標,突出重點,突破難點。本節(jié)課我采用的教學方法主要有創(chuàng)設情境法,引導啟發(fā)法,同時輔以講練結合,借助現代化的教學手段,以達到良好的教學效果。根據新課標的要求,同時又設計了與教法相適應的學法,我將“學習的主動權還給學生”,通過自主探索,合作交流等方式自主學習,真正讓數學教學的課堂變成學生的課堂。六、說教學準備為了更好的達成本節(jié)課的課堂教學目標,老師學生需要做如下的教學準備:1、教具:根據教材內容自制的多媒體課件等教具。2、學具:學生以小組為單位準備表格等學具。
3、變換角度,深入思考第三幅情境圖隱含著多樣的等量關系,也正是引發(fā)學生數學思考的最佳情境。根據學生認識的深入程度,可適當讓學生體會到等式的“值等”和“意等”,并放手讓學生探究,根據不同的認識找到不同的等量關系,列出等量關系不同的同解方程。在教學中,先引導孩子發(fā)現情境中的基本相等關系:2瓶水的水量+一杯水的水量=一壺水的水量,并且列出等式2z+200=2000,在此基礎上,再引導孩子發(fā)現其他的等量關系。在這一過程中,充分激發(fā)孩子探求知識的欲望,調動孩子思考的主動性和靈活性,從而找到多樣化的等量關系,并進一步提高孩子解決數學問題的能力。4、建立概念,判斷鞏固在前面教學的基礎上總結、抽象出方程的含義。通過三道例題的簡潔數學式子表達,讓小組合作尋找他們的共同特點,從而建立方程的概念?!昂形粗獢怠迸c“等式”是方程概念的兩點最重要的內涵。并通過“練一練”讓學生直接找出方程。
(6)交流。6的乘法口訣一共有幾句?口訣中的第一個數與算式中的第二個因數相同,表示什么?口訣中的第二個數與算式的第一個因數相同,表示什么?相鄰兩句口訣的積相差幾?哪幾句難記一些?你用什么方法記呢?怎樣記住"三六十八"、"四六二十四"兩句口訣?教師在學生發(fā)言的基礎上鼓勵學生大膽說、想出不同記口訣的方法。(7)應用"做一做"第1題(學生半獨立完成):①用6根小棒擺1個六邊形;②擺2個六邊形要用多少根小棒?你是怎樣想的?(想口訣"二六十二"。)③運用所學的口訣口答擺4個、6個、3個、5個六邊形所需要向小棒數。"做一做"第2題(獨立完成):①將第2題改為填空題,在圓圈內填寫正確的積;②口答得數,并說一說所用口訣。
教學目標:1.能利用三角函數概念推導出特殊角的三角函數值.2.在探索特殊角的三角函數值的過程中體會數形結合思想.教學重點:特殊角30°、60°、45°的三角函數值.教學難點:靈活應用特殊角的三角函數值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數量關系?如果∠A=45°,那么三邊長有什么特殊的數量關系?二、導讀:仔細閱讀課本內容后完成下面填空:
教學目標(一)教學知識點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的應用.2.能夠把實際問題轉化為數學問題,能夠借助于計算器進行有關三角函數的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數學活動,提高學習數學、學好數學的欲望.教具重點1.經歷探索船是否有觸礁危險的過程,進一步體會三角函數在解決問題過程中的作用.2.發(fā)展學生數學應用意識和解決問題的能力.教學難點根據題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現法教具準備多媒體演示
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數,同樣根據“同角的余角相等”,鉛垂線所指的度數就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據測量數據,就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據tan x= ,可以求出tan x的值,然后根據例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
(8)物價部門規(guī)定,此新型通訊產品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,銷售量y(件)與銷售單價x(元)之間的函數關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?
③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數的解析式,并根據自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:(1)連接BI,根據I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.
解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
解析:點E是BC︵的中點,根據圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數問題,培養(yǎng)自己利用數學知識解答實際問題的能力.三、板書設計二次函數y=ax2+bx+c的圖象與性質1.二次函數y=ax2+bx+c的圖象與性質2.二次函數y=ax2+bx+c的應用
(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結:解決本題的關鍵是根據圖形特點選取一個合適的參數表示它們,得出關系式后運用函數性質來解.三、板書設計二次函數y=a(x-h(huán))2+k的圖象與性質1.二次函數y=a(x-h(huán))2+k的圖象與性質2.二次函數y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數關系式表示?問題2:如何畫出這樣的函數圖象?二、合作探究探究點:二次函數y=x2和y=-x2的圖象與性質【類型一】 二次函數y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數的圖象:(1)y=x2;(2)y=-x2.根據圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結:畫拋物線y=x2和y=-x2的圖象時,還可以根據它的對稱性,先用描點法描出拋物線的一側,再利用對稱性畫另一側.