若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設計比例的性質基本性質:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經歷比例的性質的探索過程,體會類比的思想,提高學生探究、歸納的能力.通過問題情境的創(chuàng)設和解決過程進一步體會數(shù)學與生活的緊密聯(lián)系,體會數(shù)學的思維方式,增強學習數(shù)學的興趣.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結:矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經歷矩形的概念和性質的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質上來,明確矩形是特殊的平行四邊形.培養(yǎng)學生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數(shù)是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數(shù)學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.
千百年來,南極這個亙古長眠的世界一面向世人展示著自己冰肌玉骨、絕世無雙的美麗,一面以其層層冰嶂、酷冷奇寒的肅殺之氣凜然回絕了人類無數(shù)次好奇的拜訪。因為那里的天氣實在是太惡劣了。而近百年來,無數(shù)探索者在南極留下了他們的足跡,他們?yōu)槿祟惖倪M步事業(yè)作出了自己的貢獻,有的甚至獻出了寶貴的生命。1911年,兩位著名的探險家挪威人阿蒙森和英國人斯科特踏上了沖擊南極點的征程。這兩個人都想成為第一個到達南極點的英雄。經過一番激烈的競爭,結果是阿蒙森隊捷足先登,于1911年12月14日到達南極,而斯科特隊則于1912年1月18日才到達,比阿蒙森隊晚了將近五個星期。最后,阿蒙森勝利而歸,成功的旗幟永遠飄揚在南極點上,而斯科特等五名沖擊南極的英雄,因為南極寒冷天氣的突然提前到來,饑寒交迫,體力不支,在返回的途中與嚴寒搏斗了兩個多月,最后長眠在茫茫的冰雪之中。
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進行角的運算.一、情境導入同學們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點一:角的比較在某工廠生產流水線上生產如圖所示的工件,其中∠α稱為工件的中心角,生產要求∠α的標準角度為30°±1°,一名質檢員在檢驗時,手拿一量角器逐一測量∠α的度數(shù).請你運用所學的知識分析一下,該名質檢員采用的是哪種比較方法?你還能給該質檢員設計更好的質檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質檢中,采用疊合法比較快捷.
新建成的紅星中學,首次招收七年級新生12個班共500人,學校準備修建一個自行車車棚.請問需要修建多大面積的自行車車棚?請你設計一個調查方案解決這個問題.解析:決定自行車車棚面積的因素有兩個,即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點應圍繞這兩個因素進行.解:調查方案如下:(1)對全體新生的到校方式進行問卷調查.調查問卷如下:你到校的方式是騎自行車嗎?A.經常是 B.不經常是C.很少是 D.從不是(2)根據(jù)調查問卷結果分類統(tǒng)計騎自行車的人數(shù);(3)實際測量或估計存放1輛自行車的大約占地面積;(4)根據(jù)學校的建設規(guī)劃、財力等因素確定自行車車棚的面積.方法總結:確定調查方案時必須明確兩個問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進行調查可以獲得這些數(shù)據(jù)?探究點三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進行了調查,并將調查結果制作成如圖所示的統(tǒng)計圖,請根據(jù)圖中的信息回答下列問題:
解析:根據(jù)“全等三角形的對應角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結:本題將三角形內角和與全等三角形的性質綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內角之間的關系聯(lián)系起來.三、板書設計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質:全等三角形的對應角、對應線段相等.首先展示全等形的圖片,激發(fā)學生興趣,從圖中總結全等形和全等三角形的概念.最后總結全等三角形的性質,通過練習來理解全等三角形的性質并滲透符號語言推理.通過實例熟悉運用全等三角形的性質解決一些簡單的實際問題
方法總結:作平移圖形時,找關鍵點的對應點是關鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應點;②確定圖形中的關鍵點;③利用第一組對應點和平移的性質確定圖中所有關鍵點的對應點;④按原圖形順序依次連接對應點,所得到的圖形即為平移后的圖形.三、板書設計1.平移的定義在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移.2.平移的性質一個圖形和它經過平移所得的圖形中,對應點所連的線段平行(或在一條直線上)且相等,對應線段平行(或在一條直線上)且相等,對應角相等.3.簡單的平移作圖教學過程中,強調學生自主探索和合作交流,學生經歷將實際問題抽象成圖形問題,培養(yǎng)學生的邏輯思維能力和空間想象能力,使得學生能將所學知識靈活運用到生活中.
活動準備:各種交通標志、畫有標志或無標志的拼板若干、立體骰子若干、帶有交通標志的禮物若干、磁帶、錄音機、有交通標志的牌子 活動過程: 一、 隨音樂跳兔子舞進入活動場地。二、 你說我翻 “小朋友,你們知道哪些交通標志啊?你們所說的可能會在后面的黑板上哦!”
2、教學準備:磁鐵;探索材料:回形針,玩具,一元硬幣,夾子,茶葉罐等鐵制材料和非鐵制材料:積木,塑料玩具,紙杯,玻璃球,氣球……裝水的大盆兩個;取物工具---簍子、盤子、有磁鐵的釣鉤、勺子、筷子等;空箱子2只,空盆1個3、教學過程a) 情景引入(出示大盆)師:陳老師遇到一個問題---小弟弟把許多東西一起扔到了這兩個玩水的大盆里,這可怎么辦呢? 提出問題討論:怎樣才能將這些東西拿出來呢?你們能幫我想想辦法嗎?
2、 享受撕紙活動帶來的快樂。 活動準備: 1、 活動前已經學會唱《小雪花》 ;音樂:小雪花 2、 人手一份:白紙、手工紙、盒子、粘有透明膠布的紙團(用于滾雪球) 3、flash下雪
目的在于1、體驗和大家一起過生日的快樂。2、能關注身邊的人,分享他人的歡樂。我們知道,這個年齡的孩子,他們關注的往往是自己。但是作為集體中的一員,讓幼兒體驗、感受自己行為給他人帶來的痛苦或是歡樂并在活動中去分享別人的快樂是非常有益的。盡管家長們用各種不同的方式為孩子慶祝,讓生日過得豐富多彩,但過生日時,孩子只是對禮物、對蛋糕感興趣,無法感受父母、成人對他們的愛,更無法體驗同伴之間的愛。面對這種情況,我覺得應該幫助孩子從關注自己的狹隘視角中走出來,創(chuàng)設環(huán)境,使幼兒開始關注家人、同伴、居住場所和與之有關的其它資訊,鼓勵他們在講述自己、表現(xiàn)自己獨特個性的同時,激起他們關注和了解別人的愿望。這也就是我們進行這個活動的目的所在。二、主題墻飾的創(chuàng)設在每一個平行單元的開展過程中,我們都會組織幼兒進行討論,聽聽孩子們的想法和需要,我們會為孩子留出最大的空間,讓他們大膽發(fā)揮想象力和創(chuàng)造力,讓孩子們主動地去關心主題墻飾,使我們的主題環(huán)境創(chuàng)設伴隨主題開展的日漸深入而不斷完善。我們的主題活動探索式、連續(xù)性的進行,課程的內容不斷豐富完善,課程形式也日趨多樣,由談話、討論發(fā)展到手工、繪畫、觀察、資料查閱、分工合作、家園合作等等。在主題板 的中間是一個大的生日蛋糕,上面有四根蠟燭,代表著過生日的小朋友都已經四歲了。圍繞蛋糕的是平行三個單元內容,左側是家長、老師及小朋友的祝福(其中包括家長寫來的孩子在成長中的一些趣事)。右面是孩子們收集的在自己過生日時家長們送的禮物(包括:蛋糕、服裝、玩具等)再旁邊則是孩子們?yōu)檫^生日的小朋友、小動物準備的禮物(設計的蛋糕、賀卡等);主題版的下面是孩子在進行生日慶?;顒訒r的照片,如:集體生日會、時裝秀表演、化妝舞會等。同時在醒目位置懸掛著本月小壽星的照片。
內容與要求:1.喜歡觀察周圍花草樹木,有愛護它們的情感。2.嘗試通過各種活動感受雨天的自然景象與變化,體驗雨天帶來的樂趣?;顒诱f明:淅瀝瀝,嘩啦啦,下雨了!幼兒一看到下雨就抱怨下雨的日子太沒勁:不能出去滑滑梯,不能出去散步,上幼兒園或回家都不方便…… 為了消除幼兒的消極想法,培養(yǎng)幼兒樂觀積極的態(tài)度,我選取了故事“雨天里的多多”開設此次活動。通過故事中多多在下雨天發(fā)生的事情,引導孩子體驗雨天帶來的樂趣。同時,我也在活動過程中讓幼兒自己嘗試“撐雨傘”、“穿雨衣”。因為我發(fā)現(xiàn)在下雨天,大多數(shù)孩子都是父母、長輩幫著穿雨衣、撐雨傘。對于小班的幼兒來說,這也是一個培養(yǎng)幼兒自理能力的好機會。
健康:1、感受南瓜節(jié)歡樂的氣氛。2、通過活動,讓幼兒知道多吃粗糧好。懂得吃東西要講衛(wèi)生。探索:1、能用各種感官,主動去了解南瓜的特點和作用等。2、能用普通話講出南瓜明顯的特征。表現(xiàn):1、在活動中,培養(yǎng)幼兒的觀察能 力、動手操作能力、語言表達能力、合作意識等。2、能用交流、談話、游戲、分享、繪畫、親子活動等形式進行表征。二、情境活動1、親親南瓜 涉及領域:健康、探索2、蛤蟆吃南瓜 涉及領域:健康、表現(xiàn)3、幸福分享 涉及領域:健康、表現(xiàn)4、摘南瓜 涉及領域:健康、探索5、南瓜豐收啦 涉及領域:表現(xiàn)、探索
教學難點:老師引導學生夸獎學生自己,父母親人及周圍的小伙伴。 教具準備:和小朋友生活場景有關的圖片(包括在家在學校等等)。如:媽媽在收拾房間,老師上課,小朋友回答問題等場景的圖片, 教學場景:七秒卡通的幼兒園里 教學內容: (1)好晴朗的天哪,媽媽在洗衣服,?。岩瞾韼兔?,兩個人一起努力,干凈的衣服在陽光的照耀下好漂亮啊。小Q對媽媽說,媽媽我已經是大孩子了,讓我來幫助你吧。媽媽說:?。颜媸莻€熱愛勞動的好孩子。(圖片)?。押蛬寢屧谙匆路?,另一邊干凈的衣服曬在陽光下。