證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
解:方法一:因?yàn)镈E∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因?yàn)镈F∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因?yàn)镈E∥BC,所以∠ADE=∠B.又因?yàn)镈F∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長(zhǎng),常通過(guò)找三角形相似得到成比例線段而求得,因此選擇哪兩個(gè)三角形就成了解題的關(guān)鍵,這就需要通過(guò)已知的線段和所求的線段分析得到.三、板書(shū)設(shè)計(jì)(1)相似三角形的定義:三角分別相等、三邊成比例的兩個(gè)三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個(gè)三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗(yàn)事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動(dòng)手探究、歸納總結(jié)的能力.
(一)導(dǎo)入新課三角形全等的判定中AA S 和ASA對(duì)應(yīng)于相似三 角形的判定的判定定理1,SAS對(duì)應(yīng)于相似三 角形的判定的判定定理2,那么SSS 對(duì)應(yīng)的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書(shū))(二) 做一做畫(huà)△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設(shè)法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說(shuō)說(shuō)你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個(gè)三 角形相似.(三)例題學(xué)習(xí)例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個(gè)三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習(xí)四、小結(jié)本節(jié)學(xué) 習(xí)了相似三角形的判定定理3,使用時(shí)一定要注意它使用的條件.
[想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測(cè)量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點(diǎn)拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽(yáng)光照射下影子都在平地上,并能測(cè)出影子的長(zhǎng)度,那么,可以在平地垂直樹(shù)一根小棒,等到小棒的影子恰好等于棒高時(shí),再量旗桿的影子,此時(shí)旗桿的影子長(zhǎng)度就是這個(gè)旗桿的高度.2、可以采用立一個(gè)已知長(zhǎng)度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長(zhǎng)度根據(jù)線段成比例來(lái)進(jìn)行計(jì)算.3、拿一根知道長(zhǎng)度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時(shí)人到旗桿的距離、人手臂的長(zhǎng)度和棒長(zhǎng),就可以利用三角形相似來(lái)進(jìn)行計(jì)算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識(shí)?2、在運(yùn)用科學(xué)知識(shí)進(jìn)行實(shí)踐過(guò)程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對(duì)自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉
●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問(wèn)題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問(wèn)題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過(guò)溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過(guò)比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書(shū)設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書(shū)設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問(wèn)題,總結(jié)常見(jiàn)的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
同理,圖③中,三角形的三邊長(zhǎng)分別為2,5,3;同理,圖④中,三角形的三邊長(zhǎng)分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個(gè)圖形中的三角形均為格點(diǎn)三角形,可以根據(jù)勾股定理求出各邊的長(zhǎng),然后根據(jù)三角形三邊的長(zhǎng)度是否成比例來(lái)判斷兩個(gè)三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長(zhǎng)按大小順序排列,然后分別計(jì)算他們對(duì)應(yīng)邊的比,最后由比值是否相等來(lái)確定兩個(gè)三角形是否相似.三、板書(shū)設(shè)計(jì)相似三角形的判定定理3:三邊成比例的兩個(gè)三角形相似.從學(xué)生已學(xué)的知識(shí)入手,通過(guò)設(shè)置問(wèn)題,引導(dǎo)學(xué)生進(jìn)行計(jì)算、推理和歸納,提高分析問(wèn)題和解決問(wèn)題的能力.感受兩個(gè)三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會(huì)事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì).
課程名稱數(shù)學(xué)授課教師趙娜授課章節(jié)第四章第四節(jié)對(duì)數(shù)授課時(shí)間2015—2016年第一學(xué)期 第2周第1次課授課班級(jí)15級(jí)一班,15級(jí)二班,15級(jí)三班,15級(jí)四班,15級(jí)五班,15級(jí)六班,15級(jí)七班教學(xué)目的⑴ 理解對(duì)數(shù)的概念,理解常用對(duì)數(shù)和自然對(duì)數(shù)的概念; ⑵ 掌握利用計(jì)算器求對(duì)數(shù)值的方法; ⑶了解積、商、冪的對(duì)數(shù).教學(xué)重點(diǎn) 和難點(diǎn)【教學(xué)重點(diǎn)】 指數(shù)式與對(duì)數(shù)式的關(guān)系. 【教學(xué)難點(diǎn)】 對(duì)數(shù)的概念.復(fù)習(xí)提問(wèn)(1) 指數(shù)函數(shù)圖像的性質(zhì)本課小結(jié)⑴ 理解對(duì)數(shù)的概念,理解常用對(duì)數(shù)和自然對(duì)數(shù)的概念; ⑵ 掌握利用計(jì)算器求對(duì)數(shù)值的方法; ⑶了解積、商、冪的對(duì)數(shù).布置作業(yè)練習(xí)冊(cè)p7頁(yè)1-4題檢查簽字 檢查日期
各位老師、各位同學(xué):星期一早上好!再過(guò)幾天就是“六一”國(guó)際兒童節(jié)了,首先,我預(yù)祝同學(xué)們節(jié)日愉快!每當(dāng)“六一”兒童節(jié)的時(shí)候,同學(xué)們都興高采烈地歡度著自己的節(jié)日。那一張張笑臉,一陣陣歌聲,都充滿了幸福和快樂(lè)。但是你是否知道這“六一”節(jié)的來(lái)歷?是否知道當(dāng)年確定兒童節(jié)的時(shí)候,是因?yàn)槭澜缟嫌袩o(wú)數(shù)的少年兒童在戰(zhàn)爭(zhēng)中被奪去了幼小的生命。那是在第二次世界大戰(zhàn)期間,1942年6月,德國(guó)法西斯槍殺了捷克的一個(gè)名叫利迪策村的16歲以上的男性公民140余人和全部嬰兒,并把婦女和90名兒童押往集中營(yíng)。村里的房舍、建筑物均被燒毀,好端端的一個(gè)村莊就這樣被德國(guó)法西斯給毀了。為了悼念利迪策村和全世界所有在法西斯侵略戰(zhàn)爭(zhēng)中死難的兒童,反對(duì)帝國(guó)主義戰(zhàn)爭(zhēng)販子虐殺和毒害兒童,保障兒童權(quán)利,1949年11月國(guó)際民主婦女聯(lián)合會(huì)在莫斯科召開(kāi)執(zhí)委會(huì),正式?jīng)Q定每年6月1日為全世界少年兒童的節(jié)日,即國(guó)際兒童節(jié)。
本節(jié)課開(kāi)始時(shí),首先由一個(gè)要在一塊長(zhǎng)方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問(wèn)題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過(guò)問(wèn)題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過(guò)對(duì)實(shí)際問(wèn)題的解決來(lái)引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問(wèn)題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問(wèn)題的能力。3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過(guò)程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長(zhǎng)分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開(kāi)方數(shù)相乘,根指數(shù)不變,如果積含有能開(kāi)得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
方法總結(jié):(1)若被開(kāi)方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開(kāi)方數(shù)(式)中不含能開(kāi)得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開(kāi)方數(shù)是否還有分母,是否還有能開(kāi)得盡方的因數(shù)或因式.三、板書(shū)設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過(guò)程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問(wèn)題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.
屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
本文具有很強(qiáng)的畫(huà)面感,凸顯出繪畫(huà)美,雖是散文,卻滿貯詩(shī)意,正是文中有畫(huà),畫(huà)中有詩(shī)。作者從色澤、層次和動(dòng)態(tài)上向人們展示了一幅栩栩如生的春景圖。作者筆下的春景圖色澤鮮艷,不僅有象征希望的“嫩嫩的,綠綠的”小草,還有“紅的像火,粉的像霞,白的像雪”的繁花,也有溫暖的“紅紅的”太陽(yáng)的臉和“黃暈的”燈光,這些色彩描繪出了一個(gè)生機(jī)勃勃而又安靜祥和的春天。在描寫春景的時(shí)候,作者還通過(guò)有層次感的描寫使景物意蘊(yùn)悠長(zhǎng),例如對(duì)春雨的描寫是從“人家屋頂上”到“小路上”“石橋邊”再到“地里”,從遠(yuǎn)至近,層次分明。另外,朱自清使用精妙的語(yǔ)言向讀者展示了動(dòng)態(tài)(生機(jī))美,在他筆下,花是“趕趟兒”的,蜜蜂是“鬧著”的,氣味兒是“醞釀”的,一切都是“生長(zhǎng)著”的,洋溢著盎然的生機(jī)。作者從總體上描繪春景,大地回春、萬(wàn)物復(fù)蘇的景象就活生生地展現(xiàn)在了讀者眼前。
(學(xué)生交流,教師引導(dǎo),總結(jié)方法)(1)方法1:主謂之間要停頓?!臼纠恳焕?得骨/止;其一/犬坐于前。(2)方法2 :謂語(yǔ)與賓語(yǔ)之間要停頓?!臼纠款?野有麥場(chǎng);乃悟/前狼/假寐 。(3)方法3:連詞前面可以停頓。【示例】后狼止/而前狼又至;意將/隧入/以攻其后也。(4)方法4 :發(fā)語(yǔ)詞后面要停頓。【示例】蓋/以誘敵。(全班齊讀課文,讀順文章)師小結(jié):理解文意,固然可以運(yùn)用停頓技巧,但最重要的方法是弄懂字詞大意、文句意思。理解了文意,才能讀準(zhǔn)句讀,有利于我們讀順文章?!驹O(shè)計(jì)意圖】本環(huán)節(jié)旨在通過(guò)學(xué)習(xí)互助的方式,調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情,充分發(fā)揮學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,進(jìn)而理解文意,讀順文章。教師及時(shí)點(diǎn)撥,適時(shí)歸納文言釋詞方法、句式和停頓劃分小技巧,實(shí)現(xiàn)知識(shí)學(xué)習(xí)與技能掌握的統(tǒng)一。四、細(xì)讀課文,讀懂內(nèi)容1.概括文章情節(jié)文章講述了屠戶殺狼的故事。按照事件的發(fā)展,情節(jié)一般可以分為開(kāi)端(發(fā)生)、發(fā)展、高潮和結(jié)局。請(qǐng)同學(xué)們細(xì)讀課文后,用詞語(yǔ)概括這個(gè)故事的發(fā)展經(jīng)過(guò)。(生交流后,師明確)
【設(shè)計(jì)意圖】此環(huán)節(jié)聚焦第三只貓的悲劇,讓學(xué)生通過(guò)品析語(yǔ)言,想象貓的內(nèi)心冤屈,同時(shí)結(jié)合創(chuàng)作背景,逐層深入地理解課文主題及作者的人文情懷。三、拓展延伸1.同學(xué)們,你喜歡文中哪一只貓呢?為什么?(生自由討論)預(yù)設(shè)(1)喜歡第一只或第二只貓,因?yàn)樗每?,性情可?ài)、活潑。(2)喜歡第三只貓,它更可憐,更需要關(guān)愛(ài)。(3)都喜歡,因?yàn)樯环指叩唾F賤,它們是平等的。我們要尊重每一個(gè)生命。2.如果你是第三只貓,應(yīng)該怎么做才能避免悲劇的發(fā)生呢?(分組討論,全班交流。可從“自省”“自強(qiáng)”“完善自我”等角度討論)預(yù)設(shè)(1)如果我是第三只貓,首先要自我反省,知道自己哪些方面不夠優(yōu)秀,找到不足,然后不斷努力,完善自我。(2)不能埋怨別人,不能自甘墮落,不能放棄自己。結(jié)束語(yǔ):文章以“我家養(yǎng)了好幾次貓,結(jié)局總是失蹤或死亡”總領(lǐng)全文,以“自此,我家永不養(yǎng)貓”收束全文,結(jié)構(gòu)緊湊。文章以貓寫人,用貓的世界折射世態(tài)人情。
魯迅曾把《昆蟲(chóng)記》稱為“講昆蟲(chóng)的故事”“講昆蟲(chóng)生活”的楷模。魯迅說(shuō):“他的著作還有兩種缺點(diǎn):一是嗤笑解剖學(xué)家,二是用人類道德于昆蟲(chóng)界?!敝茏魅苏f(shuō):“法布爾的書(shū)中所講的是昆蟲(chóng)的生活,但我們讀了卻覺(jué)得比看那些無(wú)聊的小說(shuō)戲劇更有趣味,更有意義?!卑徒鹫f(shuō):“《昆蟲(chóng)記》融作者畢生的研究成果和人生感悟于一爐,以人性觀照蟲(chóng)性,將昆蟲(chóng)世界化作供人類獲取知識(shí)、趣味、美感和思想的美文?!眰鹘y(tǒng)文化玉蟬:蟬意喻人生蟬在古人的心目中地位很高,向來(lái)被視為純潔、清高、通靈的象征。玉蟬究其用途,大體可分為四種:一是佩蟬,是專門佩戴在人身上以作裝飾和避邪用,示高潔;一種為冠蟬,是作為飾物綴于帽子上的,表示高貴;一種是琀蟬,以蟬的羽化比喻人能重生,寓指精神不死,再生復(fù)活;還有一種是鎮(zhèn)蟬,做鎮(zhèn)紙用的文房用品,多出現(xiàn)在明代以后,前三種蟬屬于高古玉,主要產(chǎn)生在商周至戰(zhàn)漢時(shí)期。