解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學(xué)中,讓學(xué)生參與課堂探究,進行自主歸納,并對易錯點加強練習(xí).從而讓學(xué)生對知識的理解從感性認識上升到理性認識.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生的感性認識,提高了學(xué)生對新知識的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進一步進行鞏固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進行解答.
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應(yīng)用本節(jié)知識的綜合性較強,要求學(xué)生熟練掌握前面所學(xué)的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學(xué)生理解并掌握多項式與多項式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學(xué)生從直觀上積累感性認識,從而有效地激發(fā)了學(xué)生的學(xué)習(xí)積極性和探究熱情,提高了課堂的教學(xué)效率,促進了學(xué)生對新知識的理解和掌握.從課堂教學(xué)的情況來看,學(xué)生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學(xué)和作業(yè)中進一步加強分類思想的鞏固和訓(xùn)練
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
3.請幾組同學(xué)表演這幾個的場面,其他同學(xué)做評委,從模仿表演中享受學(xué)習(xí)音樂的快樂。五.課堂小結(jié) (階段目標(biāo):以“我的收獲”(課件十)幫助學(xué)生總結(jié)所學(xué)內(nèi)容,知道音樂中,不同的音樂要素可以表現(xiàn)不同的人物、場面)課后反思:(課件十一)在本節(jié)音樂欣賞教學(xué)中,我堅持以“聽”為核心(因為音樂是一門聽覺藝術(shù)),讓學(xué)生“帶著問題聽”、“想著聽”、“動著聽”、“演著聽”等多元化的“聽”的形式。一系列“聽”的任務(wù)不僅提高學(xué)生的注意力,而且提高學(xué)生“聽”的興趣與“聽”的質(zhì)量。而且我創(chuàng)造和諧的課堂氣氛,積極引導(dǎo)學(xué)生把對音樂的內(nèi)心感受大膽地用語言表達出來,讓學(xué)生主動參與音樂快樂學(xué)習(xí)的實踐中去,創(chuàng)建出有利于學(xué)生發(fā)展的生動活潑的音樂課堂情景,讓學(xué)生的了解音樂,感受音樂,融入音樂。
①談話引入:“小朋友們喜愛的小動物還有很多很多呢,你們能給其他動物編上歌詞并說出來嗎?”讓我們來當(dāng)“小小作詞家吧”。 ②鼓勵學(xué)生進行創(chuàng)編。 ③選擇幾種,跟著音樂一起唱。 (培養(yǎng)學(xué)生的音樂創(chuàng)造能力,同時引導(dǎo)學(xué)生要關(guān)于觀察、關(guān)于模仿,通過模仿,由易到難、循序漸進地進行創(chuàng)造。 4、小結(jié) 師:動物是人類的朋友,我們要保護動物,愛護動物。聽著小朋友們美妙的歌聲,看著大家親密無間的合作,老師心里無比的高興。同學(xué)們還可以把小動物們請到我們的歌曲中來,和他們成為好朋友,你們可真的很能干! 整個教學(xué)過程從一開始的律動,后來的模仿到創(chuàng)編和即興表演,運用感知法、認知法、學(xué)唱法,讓學(xué)生用有感情的演唱和肢體語言表達對小動物的喜愛之情。通過創(chuàng)編,培養(yǎng)合作精神和創(chuàng)新能力,獲得成功的喜悅。使學(xué)生的演、唱、創(chuàng)新、合作能力得到很好的發(fā)展,并滲透了思想教育。
一、教學(xué)內(nèi)容本節(jié)課是人教版三年級下冊第二單元第一課時(口算除法)的教學(xué)內(nèi)容。二、知識背景《口算除法》是在學(xué)生掌握了表內(nèi)乘、除法,一位數(shù)乘多位數(shù)的基礎(chǔ)上進行教學(xué)的,為后面學(xué)生掌握除數(shù)是兩位數(shù)的除法,學(xué)習(xí)除數(shù)是多位數(shù)的除法奠定了扎實的知識和思維基礎(chǔ)。本節(jié)課教材在編排上注意體現(xiàn)新的教學(xué)理念,將計算教學(xué)與解決問題相結(jié)合,讓學(xué)生感受到學(xué)習(xí)數(shù)學(xué)的實用價值。本節(jié)課教材安排了主題圖和例1,主題圖為我們提供的資源是一幅運送蔬菜的場景圖,通過小精靈的問題“你能提出什么問題?”引出除數(shù)是一位數(shù)的口算除法。三、教學(xué)目標(biāo):知識與技能1、理解掌握口算整十、整百、整千數(shù)除以一位數(shù)的算理,能正確熟練地口算。2、培養(yǎng)學(xué)生自主探究能力、抽象概括能力、解決問題的能力、數(shù)學(xué)表達能力和滲透轉(zhuǎn)化、遷移類推的數(shù)學(xué)思想方法。過程與方法以學(xué)生為主體,引導(dǎo)其獨立思考,合作交流,共同探討一位數(shù)除整十整百數(shù)的口算方法和算理。
一、說教材我說課的課題是《三位數(shù)除以一位數(shù)》,本課是人教版三年級下冊第二單元除數(shù)是一位數(shù)的除法的筆算方法第二課時。這節(jié)課是在學(xué)生掌握了兩位數(shù)除以一位數(shù)的筆算基礎(chǔ)上進行教學(xué)的。首先回顧兩位數(shù)除以一位數(shù)的筆算,在此基礎(chǔ)上,鼓勵學(xué)生嘗試將過去掌握的兩位數(shù)除以一位數(shù)的算法遷移到三位數(shù)除以一位數(shù)的筆算上來,它是以后學(xué)習(xí)較復(fù)雜除法的基礎(chǔ),也是學(xué)習(xí)數(shù)與代數(shù)的基礎(chǔ)之一。1、教學(xué)目標(biāo)(1)使學(xué)生理解掌握三位數(shù)除以一位數(shù)的筆算方法,培養(yǎng)學(xué)生有序思考的能力。(2)使學(xué)生在活動中積極地探索并理解算理,激發(fā)學(xué)生學(xué)習(xí)的熱情。 (3)使學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,能夠運用所學(xué)知識解決生活中的簡單問題。2、教學(xué)重難點重點:掌握三位數(shù)除以一位數(shù)的筆算方法。難點:掌握三位數(shù)除以一位數(shù)的筆算方法并驗算。
1、教學(xué)內(nèi)容本節(jié)課是人教版數(shù)學(xué)教材三年級下冊第二單元《除數(shù)是一位數(shù)的除法》第二小節(jié)《筆算除法》的第一課時——《“一位數(shù)除兩位數(shù) 商是兩位數(shù)”的筆算除法》。2、教材分析本節(jié)課是整數(shù)除法的相關(guān)知識,學(xué)這一內(nèi)容之前,學(xué)生已經(jīng)具備了口算除法和除法豎式的基礎(chǔ),所以,學(xué)生的認知結(jié)構(gòu)已具備同化新知的基礎(chǔ),我認為學(xué)生學(xué)習(xí)本課內(nèi)容是可行的,但是具有一定的挑戰(zhàn)性。學(xué)了這一內(nèi)容后,為學(xué)生掌握除數(shù)是兩位數(shù)的除法,學(xué)習(xí)除數(shù)是多位數(shù)的除法奠定了扎實的知識和思維基礎(chǔ),讓學(xué)生在活動中理解筆算除法的算理,探索用豎式計算的合理程序。體現(xiàn)了義務(wù)教育為學(xué)生終生發(fā)展奠定基礎(chǔ)這一理念,是學(xué)生在以后學(xué)習(xí)和工作中解決復(fù)雜問題的基礎(chǔ)。
讀文感悟?! ?、出示:鄧小平爺爺( )地種柏樹。 師:同學(xué)們帶著這個問題仔細讀課文,用“——”劃出有關(guān)句子。然后想一想,“( )”里填什么詞比較恰當(dāng)?! ?、生自由讀課文,邊讀邊劃?! ?、 全班匯報交流?! 煟耗阏J為鄧小平爺爺( )地種柏樹,從哪些地方體現(xiàn)出來? ?。ㄒ宰x為主,引導(dǎo)學(xué)生學(xué)會讀課文,尊重學(xué)生個性化的理解?!埃?)”里可填“起勁、仔細、認真、一絲不茍、小心”等等,隨機進行讀文,結(jié)合語言文字訓(xùn)練,體會鄧小平爺爺積極為祖國綠化作貢獻的精神。) ?。ㄈ纾赫页鲟囆∑綘敔敺N樹的動作詞“挖、挑選、移、填、站在、扶正”,同桌伙伴,一人做動作,一人口述植樹過程。“移”字可換“放”字比較理解。) 4、 四人小組討論:鄧小平爺爺為什么種樹?他是怎么想的? (結(jié)合課前收集的鄧小平爺爺?shù)馁Y料理解,體會鄧小平爺爺一心為國之心,激發(fā)學(xué)生參與綠化的熱情。)
【活動準(zhǔn)備】 1.創(chuàng)設(shè)“鐘表展覽館”的教學(xué)環(huán)境。 2.人手一只可以撥動的小時鐘。 3.反映幼兒一日生活內(nèi)容的圖片(起床、上學(xué)、午飯、午睡等),時鐘演變過程圖片。 4.可以用來自制鐘面的有關(guān)材料(如長短針、1~12的數(shù)字、各種形狀和造型的硬板紙或吹塑紙若干)。【活動過程】一、創(chuàng)設(shè)嘗試情境,激發(fā)幼兒嘗試欲望 邊聽“在鐘表店”里的音樂,邊把幼兒帶進“鐘表展覽館”,引導(dǎo)幼兒欣賞各種各樣的鐘表,激發(fā)幼兒學(xué)習(xí)的興趣。 師:請小朋友仔細看看、找找、比比這些鐘表有什么地方是相同的?再想想,工人叔叔和阿姨為什么要設(shè)計、制造這些鐘表? 二、觀察活動 通過觀察活動比較鐘表上時針、分針的不同,認識12個數(shù)字以及數(shù)字的排列位置。 提問: 1.每只鐘面上都有什么?(出示3只不同形狀的時鐘,幼兒找出鐘面上都有兩根針和1~12的數(shù)字) 2.比比看,兩根針什么地方不一樣?(長短、粗細之分)它們的名稱叫什么?(了解時針、分針的名稱) 3.鐘面上的數(shù)字排列位置是怎樣的?(認識典型的幾個數(shù)字位置12、9、3、6)
一、教學(xué)目標(biāo)(一)知識教育點使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.(二)能力訓(xùn)練點要求學(xué)生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點通過一個簡單實驗引入拋物線的定義,可以對學(xué)生進行理論來源于實踐的辯證唯物主義思想教育.二、教材分析1.重點:拋物線的定義和標(biāo)準(zhǔn)方程.2.難點:拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動設(shè)計提問、回顧、實驗、講解、板演、歸納表格.四、教學(xué)過程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運動軌跡給出拋物線的實際意義,再利用太陽灶和拋物線型的橋說明拋物線的實際用途。
教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點:正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點:正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時:2學(xué)時教學(xué)過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計算積分。首先計算。因為(利用極坐標(biāo)計算)所以。記,則利用定積分的換元法有因為,所以它可以作為某個連續(xù)隨機變量的概率密度函數(shù)。定義 如果連續(xù)隨機變量的概率密度為則稱隨機變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。